forked from layumi/Person_reID_baseline_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
instance_loss.py
37 lines (30 loc) · 1.28 KB
/
instance_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
from torch import nn, Tensor
import torch.nn.functional as F
def l2_norm(v):
fnorm = torch.norm(v, p=2, dim=1, keepdim=True) + 1e-6
v = v.div(fnorm.expand_as(v))
return v
class InstanceLoss(nn.Module):
def __init__(self, gamma = 1) -> None:
super(InstanceLoss, self).__init__()
self.gamma = gamma
def forward(self, feature, label = None) -> Tensor:
# Dual-Path Convolutional Image-Text Embeddings with Instance Loss, ACM TOMM 2020
# https://zdzheng.xyz/files/TOMM20.pdf
# using cross-entropy loss for every sample if label is not available. else use given label.
normed_feature = l2_norm(feature)
sim1 = torch.mm(normed_feature*self.gamma, torch.t(normed_feature))
#sim2 = sim1.t()
if label is None:
sim_label = torch.arange(sim1.size(0)).cuda().detach()
else:
_, sim_label = torch.unique(label, return_inverse=True)
loss = F.cross_entropy(sim1, sim_label) #+ F.cross_entropy(sim2, sim_label)
return loss
if __name__ == "__main__":
feat = nn.functional.normalize(torch.rand(256, 64, requires_grad=True))
lbl = torch.randint(high=10, size=(256,))
criterion = InstanceLoss()
instance_loss = criterion(feat, lbl)
print(instance_loss)