forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TensorOrWeights.hpp
139 lines (132 loc) · 3.71 KB
/
TensorOrWeights.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "ShapedWeights.hpp"
#include <NvInfer.h>
#include <cassert>
namespace onnx2trt
{
class TensorOrWeights
{
union
{
nvinfer1::ITensor* _tensor;
ShapedWeights _weights;
};
enum
{
NODE_TENSOR,
NODE_WEIGHTS
} _variant;
public:
TensorOrWeights()
: _tensor(nullptr)
, _variant(NODE_TENSOR)
{
}
TensorOrWeights(nvinfer1::ITensor* tensor)
: _tensor(tensor)
, _variant(NODE_TENSOR)
{
}
TensorOrWeights(ShapedWeights const& weights)
: _weights(weights)
, _variant(NODE_WEIGHTS)
{
}
bool is_tensor() const
{
return _variant == NODE_TENSOR;
}
bool is_weights() const
{
return _variant == NODE_WEIGHTS;
}
bool isNullTensor() const
{
return is_tensor() && _tensor == nullptr;
}
nvinfer1::ITensor& tensor()
{
assert(!isNullTensor());
return *_tensor;
}
nvinfer1::ITensor const& tensor() const
{
assert(!isNullTensor());
return *_tensor;
}
ShapedWeights& weights()
{
assert(is_weights());
return _weights;
}
ShapedWeights const& weights() const
{
assert(is_weights());
return _weights;
}
nvinfer1::Dims shape() const
{
return is_tensor() ? _tensor->getDimensions() : _weights.shape;
}
explicit operator bool() const
{
return is_tensor() ? _tensor != nullptr : static_cast<bool>(_weights);
}
bool isFp32() const
{
return is_tensor() ? _tensor->getType() == nvinfer1::DataType::kFLOAT
: _weights.type == ::ONNX_NAMESPACE::TensorProto_DataType_FLOAT;
}
bool isFp16() const
{
return is_tensor() ? _tensor->getType() == nvinfer1::DataType::kHALF
: _weights.type == ::ONNX_NAMESPACE::TensorProto_DataType_FLOAT16;
}
bool isInt32() const
{
return is_tensor() ? _tensor->getType() == nvinfer1::DataType::kINT32 : _weights.type == ::ONNX_NAMESPACE::TensorProto_DataType_INT32;
}
bool isBool() const
{
return is_tensor() ? _tensor->getType() == nvinfer1::DataType::kBOOL : _weights.type == ::ONNX_NAMESPACE::TensorProto_DataType_BOOL;
}
std::string getName() const
{
return is_tensor() ? _tensor->getName() : _weights.getName();
}
std::string getType() const
{
if (is_tensor())
{
switch(_tensor->getType())
{
case nvinfer1::DataType::kFLOAT:return "FLOAT";
case nvinfer1::DataType::kHALF: return "HALF";
case nvinfer1::DataType::kINT8: return "INT8";
case nvinfer1::DataType::kUINT8: return "UINT8";
case nvinfer1::DataType::kINT32: return "INT32";
case nvinfer1::DataType::kBOOL: return "BOOL";
default: return "UNKNOWN TYPE";
}
}
else
{
switch (_weights.type)
{
case ::ONNX_NAMESPACE::TensorProto::DOUBLE: return "FLOAT";
case ::ONNX_NAMESPACE::TensorProto::FLOAT: return "FLOAT";
case ::ONNX_NAMESPACE::TensorProto::INT8: return "INT8";
case ::ONNX_NAMESPACE::TensorProto::UINT8: return "UINT8";
case ::ONNX_NAMESPACE::TensorProto::FLOAT16: return "HALF";
case ::ONNX_NAMESPACE::TensorProto::BOOL: return "BOOL";
case ::ONNX_NAMESPACE::TensorProto::INT32: return "INT32";
case ::ONNX_NAMESPACE::TensorProto::INT64: return "INT32";
default: return "UNKNOWN TYPE";
}
}
}
};
} // namespace onnx2trt