-
Notifications
You must be signed in to change notification settings - Fork 1
/
AdAM_main_adaptation.py
912 lines (747 loc) · 40.1 KB
/
AdAM_main_adaptation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
import argparse
from cgi import test
import math
import random
import os
import numpy as np
# os.environ["CUDA_VISIBLE_DEVICES"]="7"
import torch
from torch import nn, autograd, optim
from torch.nn import functional as F
from torch.utils import data
import torch.distributed as dist
from torchvision import transforms
from tqdm import tqdm
from copy import deepcopy
from collections import OrderedDict
import pickle
from gan_training import utils
from gan_training.eval import Evaluator
from gan_training.utils_model_load import *
# record and visualize the statistics
try:
import wandb
except ImportError:
wandb = None
# the same as low-rank probing
from gan_training.models.model_adam import Generator as Generator
from gan_training.models.model_adam import Discriminator as Discriminator
from dataset import MultiResolutionDataset
from distributed import (
get_rank,
synchronize,
reduce_loss_dict,
reduce_sum,
get_world_size,
)
from non_leaking import augment
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2 ** 32
np.random.seed(worker_seed)
random.seed(worker_seed)
def data_sampler(dataset, shuffle, distributed):
if distributed:
return data.distributed.DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return data.RandomSampler(dataset)
else:
return data.SequentialSampler(dataset)
def requires_grad(model, flag=True):
for name, p in model.named_parameters():
p.requires_grad = flag
def accumulate(model1, model2, decay=0.999):
par1 = dict(model1.named_parameters())
par2 = dict(model2.named_parameters())
for k in par1.keys():
par1[k].data.mul_(decay).add_(par2[k].data, alpha=1 - decay)
def sample_data(loader):
while True:
for batch in loader:
yield batch
def d_logistic_loss(real_pred, fake_pred):
real_loss = F.softplus(-real_pred)
fake_loss = F.softplus(fake_pred)
return real_loss.mean() + fake_loss.mean()
def d_r1_loss(real_pred, real_img):
grad_real, = autograd.grad(
outputs=real_pred.sum(), inputs=real_img, create_graph=True
)
grad_penalty = grad_real.pow(2).reshape(
grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def g_nonsaturating_loss(fake_pred):
loss = F.softplus(-fake_pred).mean()
return loss
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
noise = torch.randn_like(fake_img) / math.sqrt(
fake_img.shape[2] * fake_img.shape[3]
)
grad, = autograd.grad(
outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True,
)
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
path_mean = mean_path_length + decay * \
(path_lengths.mean() - mean_path_length)
path_penalty = (path_lengths - path_mean).pow(2).mean()
return path_penalty, path_mean.detach(), path_lengths
def make_noise(batch, latent_dim, n_noise, device):
if n_noise == 1:
return torch.randn(batch, latent_dim, device=device)
noises = torch.randn(n_noise, batch, latent_dim, device=device).unbind(0)
return noises
def mixing_noise(batch, latent_dim, prob, device):
if prob > 0 and random.random() < prob:
return make_noise(batch, latent_dim, 2, device)
else:
return [make_noise(batch, latent_dim, 1, device)]
def get_subspace(args, init_z, vis_flag=False):
std = args.subspace_std
bs = args.batch if not vis_flag else args.n_sample_store
ind = np.random.randint(0, init_z.size(0), size=bs)
z = init_z[ind] # should give a tensor of size [batch_size, 512]
for i in range(z.size(0)):
for j in range(z.size(1)):
z[i][j].data.normal_(z[i][j], std)
return z
def train(args, train_loader, generator, discriminator, g_optim, d_optim, g_ema, device):
# init the progress bar for visualizing the training process
pbar = range(args.iter+10)
if get_rank() == 0:
pbar = tqdm(pbar, initial=args.start_iter,
dynamic_ncols=True, smoothing=0.01)
mean_path_length = 0
d_loss_val = 0
r1_loss = torch.tensor(0.0, device=device)
g_loss_val = 0
path_loss = torch.tensor(0.0, device=device)
path_lengths = torch.tensor(0.0, device=device)
mean_path_length_avg = 0
loss_dict = {}
g_module = generator
d_module = discriminator
g_ema_module = g_ema.module
accum = 0.5 ** (32 / (10 * 1000)) ##
ada_augment = torch.tensor([0.0, 0.0], device=device) ## non-leaking augmentation
ada_aug_p = args.augment_p if args.augment_p > 0 else 0.0
ada_aug_step = args.ada_target / args.ada_length
r_t_stat = 0
best_fid = 1000 # init with a high number
# the following defines the constant noise used for generating images at different stages of training
# sample_z = torch.randn(args.n_sample_store, args.latent, device=device)
sample_z = torch.load('./noise.pt').cuda()
# filter-level KML: zero-out no-update KML weights (G)
for name, param in generator.named_parameters():
if name in idx_ft_filter_fisher_g.keys():
with torch.no_grad():
param[idx_ft_filter_fisher_g[name]] = 0 # zero-out kml value
# filter-level KML: zero-out no-update KML weights (D)
for name, param in discriminator.module.named_parameters():
if name in idx_ft_filter_fisher_d.keys():
with torch.no_grad():
param[idx_ft_filter_fisher_d[name]] = 0 # zero-out kml value
# start training
for idx in pbar:
i = idx + args.start_iter
if i > args.iter+10:
print("Finishing the training...")
os.remove(os.path.join(args.output_path, "real_imgs.npy"))
break
real_img = next(train_loader)
real_img = real_img.to(device)
# # adversarial training D, no update G
# requires_grad(generator, False)
# requires_grad(discriminator, True)
noise = mixing_noise(args.batch, args.latent, args.mixing, device)
fake_img, _ = generator(noise)
if args.augment:
real_img, _ = augment(real_img, ada_aug_p)
fake_img, _ = augment(fake_img, ada_aug_p)
fake_pred, _ = discriminator(
fake_img)
real_pred, _ = discriminator(
real_img)
d_loss = d_logistic_loss(real_pred, fake_pred)
loss_dict["d"] = d_loss
loss_dict["real_score"] = real_pred.mean()
loss_dict["fake_score"] = fake_pred.mean()
# only update D
discriminator.zero_grad()
d_loss.backward()
# ---------------------------------------------------------------------------------------
# D: zero-out grad for KML filters with *low* FIM
for name, param in discriminator.module.named_parameters():
if name in idx_ft_filter_fisher_d.keys():
param.grad[idx_ft_filter_fisher_d[name]] = 0
# D: zero-out grad for pretrained filters with *high* KML FIM
filter_name = []
for name, _ in discriminator.module.named_parameters():
if name in idx_kml_filter_fisher_d.keys():
if 'v_vector' in name:
filter_name.append(name.replace('v_vector', 'weight'))
elif 'b_vector' in name:
filter_name.append(name.replace('b_vector', 'bias'))
for name, param in discriminator.module.named_parameters():
if name in filter_name:
if 'weight' in name:
corresponding_kml_name = name.replace('weight', 'v_vector')
param.grad[idx_kml_filter_fisher_d[corresponding_kml_name]] = 0
elif 'bias' in name:
corresponding_kml_name = name.replace('bias', 'b_vector')
param.grad[idx_kml_filter_fisher_d[corresponding_kml_name]] = 0
# ---------------------------------------------------------------------------------------
d_optim.step()
if args.augment and args.augment_p == 0:
ada_augment += torch.tensor(
(torch.sign(real_pred).sum().item(), real_pred.shape[0]), device=device
)
ada_augment = reduce_sum(ada_augment)
if ada_augment[1] > 255:
pred_signs, n_pred = ada_augment.tolist()
r_t_stat = pred_signs / n_pred
if r_t_stat > args.ada_target:
sign = 1
else:
sign = -1
ada_aug_p += sign * ada_aug_step * n_pred
ada_aug_p = min(1, max(0, ada_aug_p))
ada_augment.mul_(0)
# using r1_loss to regularize the D, for every 16 iterations
d_regularize = i % args.d_reg_every == 0
if d_regularize:
real_img.requires_grad = True
real_pred, _ = discriminator(
real_img)
real_pred = real_pred.view(real_img.size(0), -1)
real_pred = real_pred.mean(dim=1).unsqueeze(1)
r1_loss = d_r1_loss(real_pred, real_img)
discriminator.zero_grad()
(args.r1 / 2 * r1_loss * args.d_reg_every +
0 * real_pred[0]).backward()
# ---------------------------------------------------------------------------------------
# D: zero-out grad for KML filters with *low* FIM
for name, param in discriminator.module.named_parameters():
if name in idx_ft_filter_fisher_d.keys():
param.grad[idx_ft_filter_fisher_d[name]] = 0
# D: zero-out grad for pretrained filters with *high* KML FIM
filter_name = []
for name, _ in discriminator.module.named_parameters():
if name in idx_kml_filter_fisher_d.keys():
if 'v_vector' in name:
filter_name.append(name.replace('v_vector', 'weight'))
elif 'b_vector' in name:
filter_name.append(name.replace('b_vector', 'bias'))
for name, param in discriminator.module.named_parameters():
if name in filter_name:
if 'weight' in name:
corresponding_kml_name = name.replace('weight', 'v_vector')
param.grad[idx_kml_filter_fisher_d[corresponding_kml_name]] = 0
elif 'bias' in name:
corresponding_kml_name = name.replace('bias', 'b_vector')
param.grad[idx_kml_filter_fisher_d[corresponding_kml_name]] = 0
# ---------------------------------------------------------------------------------------
d_optim.step()
loss_dict["r1"] = r1_loss
# adversarial training G, no update D
# requires_grad(generator, True)
# requires_grad(discriminator, False)
noise = mixing_noise(args.batch, args.latent, args.mixing, device)
fake_img, _ = generator(noise)
if args.augment:
fake_img, _ = augment(fake_img, ada_aug_p)
fake_pred, _ = discriminator(
fake_img)
g_loss = g_nonsaturating_loss(fake_pred)
g_loss = g_loss
loss_dict["g"] = g_loss
# only update G
generator.zero_grad()
g_loss.backward()
# ---------------------------------------------------------------------------------------
# G: zero-out grad for *low* FIM KML filters
for name, param in generator.named_parameters():
if name in idx_ft_filter_fisher_g.keys():
param.grad[idx_ft_filter_fisher_g[name]] = 0 # zero-out kml grad
# G: zero-out grad for pretrained filters with *high* KML FIM
filter_name = []
for name, _ in generator.named_parameters():
if name in idx_kml_filter_fisher_g.keys():
if 'kml_fc' not in name:
filter_name.append(name.replace('v_vector', 'weight'))
else:
if 'v_vector' in name:
filter_name.append(name.replace('v_vector', 'weight').replace('kml_fc', 'modulation'))
elif 'b_vector' in name:
filter_name.append(name.replace('b_vector', 'bias').replace('kml_fc', 'modulation'))
for name, param in generator.named_parameters():
if name in filter_name:
if 'modulation' not in name:
corresponding_kml_name = name.replace('weight', 'v_vector')
if param.ndim != 5:
param.grad[idx_kml_filter_fisher_g[corresponding_kml_name]] = 0
else:
param.grad[:, idx_kml_filter_fisher_g[corresponding_kml_name], :, :, :] = 0
else:
if 'weight' in name:
corresponding_kml_name = name.replace('weight', 'v_vector').replace('modulation', 'kml_fc')
param.grad[idx_kml_filter_fisher_g[corresponding_kml_name]] = 0
elif 'bias' in name:
corresponding_kml_name = name.replace('bias', 'b_vector').replace('modulation', 'kml_fc')
param.grad[idx_kml_filter_fisher_g[corresponding_kml_name]] = 0
if 'activate.bias' in name or 'noise.weight' in name:
if param.requires_grad:
param.grad *= 0
# ---------------------------------------------------------------------------------------
g_optim.step()
g_regularize = i % args.g_reg_every == 0
# to save up space
del g_loss, d_loss, fake_img, fake_pred, real_img, real_pred
if g_regularize:
path_batch_size = max(1, args.batch // args.path_batch_shrink)
noise = mixing_noise(
path_batch_size, args.latent, args.mixing, device)
fake_img, latents = generator(noise, return_latents=True)
path_loss, mean_path_length, path_lengths = g_path_regularize(
fake_img, latents, mean_path_length
)
generator.zero_grad()
weighted_path_loss = args.path_regularize * args.g_reg_every * path_loss
if args.path_batch_shrink:
weighted_path_loss += 0 * fake_img[0, 0, 0, 0]
weighted_path_loss.backward()
# ---------------------------------------------------------------------------------------
# G: zero-out grad for *low* FIM KML filters
for name, param in generator.named_parameters():
if name in idx_ft_filter_fisher_g.keys():
param.grad[idx_ft_filter_fisher_g[name]] = 0 # zero-out kml grad
# G: zero-out grad for pretrained filters with *high* KML FIM
filter_name = []
for name, _ in generator.named_parameters():
if name in idx_kml_filter_fisher_g.keys():
if 'kml_fc' not in name:
filter_name.append(name.replace('v_vector', 'weight'))
else:
if 'v_vector' in name:
filter_name.append(name.replace('v_vector', 'weight').replace('kml_fc', 'modulation'))
elif 'b_vector' in name:
filter_name.append(name.replace('b_vector', 'bias').replace('kml_fc', 'modulation'))
for name, param in generator.named_parameters():
if name in filter_name:
if 'modulation' not in name:
corresponding_kml_name = name.replace('weight', 'v_vector')
if param.ndim != 5:
param.grad[idx_kml_filter_fisher_g[corresponding_kml_name]] = 0
else:
param.grad[:, idx_kml_filter_fisher_g[corresponding_kml_name], :, :, :] = 0
else:
if 'weight' in name:
corresponding_kml_name = name.replace('weight', 'v_vector').replace('modulation', 'kml_fc')
param.grad[idx_kml_filter_fisher_g[corresponding_kml_name]] = 0
elif 'bias' in name:
corresponding_kml_name = name.replace('bias', 'b_vector').replace('modulation', 'kml_fc')
param.grad[idx_kml_filter_fisher_g[corresponding_kml_name]] = 0
if 'activate.bias' in name or 'noise.weight' in name:
if param.requires_grad:
param.grad *= 0
# ---------------------------------------------------------------------------------------
g_optim.step()
mean_path_length_avg = (
reduce_sum(mean_path_length).item() / get_world_size()
)
loss_dict["path"] = path_loss
loss_dict["path_length"] = path_lengths.mean()
loss_reduced = reduce_loss_dict(loss_dict)
d_loss_val = loss_reduced["d"].mean().item()
g_loss_val = loss_reduced["g"].mean().item()
r1_val = loss_reduced["r1"].mean().item()
path_loss_val = loss_reduced["path"].mean().item()
real_score_val = loss_reduced["real_score"].mean().item()
fake_score_val = loss_reduced["fake_score"].mean().item()
path_length_val = loss_reduced["path_length"].mean().item()
if get_rank() == 0:
pbar.set_description(
(
f"d: {d_loss_val:.4f}; g: {g_loss_val:.4f}; r1: {r1_val:.4f}; "
f"path: {path_loss_val:.4f}; mean path: {mean_path_length_avg:.4f}; "
f"augment: {ada_aug_p:.4f}"
)
)
if not (i % args.eval_in_training_freq == 0):
if wandb and args.wandb:
wandb.log(
{
"Generator": g_loss_val,
"Discriminator": d_loss_val,
"Augment": ada_aug_p,
"Rt": r_t_stat,
"R1": r1_val,
"Path Length Regularization": path_loss_val,
"Mean Path Length": mean_path_length,
"Real Score": real_score_val,
"Fake Score": fake_score_val,
"Path Length": path_length_val,
}
)
# 1) generate intermidiate images
if i % args.samples_freq == 0:
if args.store_samples:
with torch.set_grad_enabled(False):
g_ema.eval()
sample, _ = g_ema([sample_z.data])
utils.save_images(
sample,
f"%s/{str(i).zfill(6)}.png" % (args.sample_dir),
nrow=int(args.n_sample_store ** 0.5)
)
del sample
# 2) save intermediate checkpoints
if (i % args.checkpoints_freq == 0) and (i > 0):
if args.store_checkpoints:
torch.save(
{
"g_ema": g_ema.state_dict(),
# uncomment the following lines only if you wish to resume training after saving.
# Otherwise, saving just the generator is sufficient for evaluations
# "g": g_module.state_dict(),
# "d": d_module.state_dict(),
# "g_optim": g_optim.state_dict(),
# "d_optim": d_optim.state_dict(),
},
f"%s/{str(i).zfill(6)}.pt" % (args.checkpoint_dir),
)
else:
pass
# 3) evaluation in training
if args.eval_in_training:
if (i % args.eval_in_training_freq == 0):
torch.save(
{
"g_ema": g_ema.state_dict(),
# uncomment the following lines only if you wish to resume training after saving.
# Otherwise, saving just the generator is sufficient for evaluations
# "g": g_module.state_dict(),
# "d": d_module.state_dict(),
# "g_optim": g_optim.state_dict(),
# "d_optim": d_optim.state_dict(),
},
os.path.join(args.checkpoint_dir, f"{str(i).zfill(6)}.pt"),
)
with torch.no_grad():
# eval metrics
score = evaluator.compute_inception_score(kid=False, pr=False)
if score['fid'] < best_fid:
best_fid = score['fid']
np.savetxt(os.path.join(args.checkpoint_dir, 'best_fid.txt'), score['fid'].reshape(1, -1))
# intra_lpips = evaluator.compute_intra_lpips(args=args).cpu().numpy()
if wandb and args.wandb:
wandb.log(
{
"FID" : score['fid'],
# "intra-lpips": intra_lpips,
"Generator": g_loss_val,
"Discriminator": d_loss_val,
}
)
# 5) update ema generator
accumulate(g_ema_module, g_module, accum) # store the moving average parameters in g_ema
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--exp", type=str, default='tmp')
parser.add_argument("--data_path", type=str, default='babies')
parser.add_argument("--iter", type=int, default=1500)
parser.add_argument("--batch", type=int, default=4)
parser.add_argument("--size", type=int, default=256, help="size of the img, must be square")
parser.add_argument("--feat_res", type=int, default=128)
parser.add_argument("--r1", type=float, default=10)
parser.add_argument("--path_regularize", type=float, default=2)
parser.add_argument("--path_batch_shrink", type=int, default=2)
parser.add_argument("--d_reg_every", type=int, default=16)
parser.add_argument("--g_reg_every", type=int, default=4)
parser.add_argument("--mixing", type=float, default=0.9)
parser.add_argument("--subspace_std", type=float, default=0.05)
parser.add_argument("--ckpt_source", type=str, default="style_gan_source_ffhq.pt", help="pretrained model")
parser.add_argument("--source_key", type=str, default='ffhq')
parser.add_argument("--lr", type=float, default=0.002)
parser.add_argument("--channel_multiplier", type=int, default=2)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--augment", dest='augment', action='store_true')
parser.add_argument("--no-augment", dest='augment', action='store_false')
parser.add_argument("--augment_p", type=float, default=0.0)
parser.add_argument("--ada_target", type=float, default=0.6)
parser.add_argument("--ada_length", type=int, default=500 * 1000)
parser.add_argument("--n_sample_train", type=int, default=10)
parser.add_argument("--n_sample_store", type=int, default=25, help="# of generated images using intermediate models")
parser.add_argument("--n_sample_test", type=int, default=5000)
parser.add_argument("--store_checkpoints", action="store_true")
parser.add_argument("--store_samples", action="store_true")
parser.add_argument("--eval_in_training", action="store_true")
parser.add_argument("--num_batch_fisher", type=int, default=5)
parser.add_argument("--fisher_quantile", type=float, default=50)
parser.add_argument("--checkpoints_freq", type=int, default=500)
parser.add_argument("--samples_freq", type=int, default=500)
parser.add_argument("--eval_in_training_freq", type=int, default=500)
parser.add_argument("--wandb", action="store_true")
parser.add_argument("--wandb_project_name", type=str, default='debug')
parser.add_argument("--wandb_run_name", type=str, default='debug')
parser.add_argument("--method", type=str, default='adam')
args = parser.parse_args()
torch.manual_seed(1)
random.seed(1)
np.random.seed(1)
# Step 1. Pre-experiment setups
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if get_rank() == 0:
print("Basic setups:", '\n', args)
# reset directory
args.output_path = os.path.join('./_output_style_gan/', args.exp)
args.sample_dir = os.path.join('./_output_style_gan/', args.exp, 'samples')
args.checkpoint_dir = os.path.join('./_output_style_gan/', args.exp, 'checkpoints')
# # for intermediate images in calculating intra-lpips
# args.intra_lpips_path = os.path.join('./_output_intra_lpips/', args.exp)
# if not os.path.exists(args.intra_lpips_path):
# os.makedirs(args.intra_lpips_path, exist_ok=True)
# Create missing directories
if not os.path.exists(args.output_path):
os.makedirs(args.output_path, exist_ok=True)
if not os.path.exists(args.sample_dir):
os.makedirs(args.sample_dir, exist_ok=True)
if not os.path.exists(args.checkpoint_dir):
os.makedirs(args.checkpoint_dir, exist_ok=True)
args.latent = 512
args.n_mlp = 8
args.start_iter = 0
# pre-process the dataset (resized and binarized into mdb file)
transform = transforms.Compose(
[
transforms.Resize(args.size),
transforms.CenterCrop(args.size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True),
]
)
# define datasets and loaders
data_path_train = os.path.join('./_processed_train', args.data_path) # only for 10-shot
data_path_test = os.path.join('./_processed_test', args.data_path)
if args.n_sample_train == 10:
train_dataset = MultiResolutionDataset(data_path_train, transform, args.size)
else:
train_dataset = MultiResolutionDataset(data_path_test, transform, args.size)
# few_shot_idx = np.random.randint(0, train_dataset.length, size=args.n_sample_train)
few_shot_idx = np.random.choice(train_dataset.length, size=args.n_sample_train, replace=False)
np.savetxt(f"./{args.output_path}/{args.n_sample_train}-shot-index.txt", few_shot_idx)
train_dataset = data.Subset(train_dataset, indices=few_shot_idx)
print(f"Few-shot transfer with {few_shot_idx.size}-shot images")
train_loader = data.DataLoader(
train_dataset,
batch_size=args.batch,
sampler=data_sampler(train_dataset, shuffle=True, distributed=False),
num_workers=8,
pin_memory=True,
drop_last=True,
)
train_loader = sample_data(train_loader)
test_dataset = MultiResolutionDataset(data_path_test, transform, args.size)
test_loader = data.DataLoader(
test_dataset,
batch_size=args.batch,
sampler=data_sampler(test_dataset, shuffle=False, distributed=False),
num_workers=8,
pin_memory=True,
drop_last=True,
worker_init_fn=seed_worker
)
test_loader = sample_data(test_loader)
# save the args
argsDict = args.__dict__
with open(os.path.join(args.output_path, 'args.txt'), 'w') as f:
f.writelines('------------------ start ------------------' + '\n')
for eachArg, value in argsDict.items():
f.writelines(eachArg + ' : ' + str(value) + '\n')
f.writelines('------------------- end -------------------')
# save the training script
import shutil
my_file = './AdAM_main_adaptation.py'
to_file = os.path.join(args.output_path, "./train_script.py")
shutil.copy(str(my_file), str(to_file))
# Step 2. Obtain the statistics of FIM
filter_fisher_g= torch.load(os.path.join(f'./_output_style_gan/_low_rank_probing_{args.source_key}-{args.data_path}', "./checkpoints/filter_fisher_g.pt"))
filter_fisher_d= torch.load(os.path.join(f'./_output_style_gan/_low_rank_probing_{args.source_key}-{args.data_path}', "./checkpoints/filter_fisher_d.pt"))
# Step 3. Obtain the quantile values for FC and Conv Layers
# G: Conv
grouped_fim_conv_g = []
filter_fisher_g_interst = dict()
for block_idx in range(12):
u_fim = filter_fisher_g[f'convs.{block_idx}.conv.u_vector'].mean()
v_fim = filter_fisher_g[f'convs.{block_idx}.conv.v_vector']
fim = u_fim + v_fim
grouped_fim_conv_g = np.concatenate((grouped_fim_conv_g, fim), axis=None)
filter_fisher_g_interst[f'convs.{block_idx}.conv.u_vector'] = filter_fisher_g[f'convs.{block_idx}.conv.u_vector']
filter_fisher_g_interst[f'convs.{block_idx}.conv.v_vector'] = filter_fisher_g[f'convs.{block_idx}.conv.v_vector']
cutline_g_conv = np.percentile(grouped_fim_conv_g, q=args.fisher_quantile)
# G: FC
grouped_fim_fc_g = []
for block_idx in range(12):
u_fim = filter_fisher_g[f'convs.{block_idx}.conv.kml_fc.u_vector'].mean()
v_fim = filter_fisher_g[f'convs.{block_idx}.conv.kml_fc.v_vector']
b_fim = filter_fisher_g[f'convs.{block_idx}.conv.kml_fc.b_vector']
fim = (u_fim + v_fim + b_fim) / 2
grouped_fim_fc_g = np.concatenate((grouped_fim_fc_g, fim), axis=None)
filter_fisher_g_interst[f'convs.{block_idx}.conv.kml_fc.u_vector'] = filter_fisher_g[f'convs.{block_idx}.conv.kml_fc.u_vector']
filter_fisher_g_interst[f'convs.{block_idx}.conv.kml_fc.v_vector'] = filter_fisher_g[f'convs.{block_idx}.conv.kml_fc.v_vector']
filter_fisher_g_interst[f'convs.{block_idx}.conv.kml_fc.b_vector'] = filter_fisher_g[f'convs.{block_idx}.conv.kml_fc.b_vector']
cutline_g_fc = np.percentile(grouped_fim_fc_g, q=args.fisher_quantile)
# Decisions
idx_kml_filter_fisher_g = dict()
idx_ft_filter_fisher_g = dict()
for key in filter_fisher_g_interst:
if 'fc' not in key and 'u_vector' in key: # for Conv layer with u_vector in name
# resemble FIM
u_fim = filter_fisher_g_interst[key].mean()
v_fim = filter_fisher_g_interst[key.replace('u_vector', 'v_vector')]
fim = u_fim + v_fim
# apply heuristics
idx_kml_filter_fisher_g[key.replace('u_vector', 'v_vector')] = np.where(fim > cutline_g_conv)[0]
idx_ft_filter_fisher_g[key.replace('u_vector', 'v_vector')] = np.where(fim <= cutline_g_conv)[0]
elif 'fc' in key and 'u_vector' in key: # for FC layer with u_vector in name
# resemble FIM
u_fim = filter_fisher_g_interst[key].mean()
v_fim = filter_fisher_g_interst[key.replace('u_vector', 'v_vector')]
b_fim = filter_fisher_g_interst[key.replace('u_vector', 'b_vector')]
fim = (u_fim + v_fim + b_fim) / 2
# apply heuristics
idx_kml_filter_fisher_g[key.replace('u_vector', 'v_vector')] = np.where(fim > cutline_g_fc)[0]
idx_ft_filter_fisher_g[key.replace('u_vector', 'v_vector')] = np.where(fim <= cutline_g_fc)[0]
idx_kml_filter_fisher_g[key.replace('u_vector', 'b_vector')] = np.where(fim > cutline_g_fc)[0]
idx_ft_filter_fisher_g[key.replace('u_vector', 'b_vector')] = np.where(fim <= cutline_g_fc)[0]
# Obtain the quantile values for Conv Layers
# D: Conv
grouped_fim_conv_d = []
filter_fisher_d_interst = dict()
for block_idx in range(1,7):
# for normal layers
for layer_idx in range(2):
u_fim = filter_fisher_d[f'convs.{block_idx}.conv{layer_idx+1}.{layer_idx}.u_vector'].mean() # 1d: in * k * k
v_fim = filter_fisher_d[f'convs.{block_idx}.conv{layer_idx+1}.{layer_idx}.v_vector'] # 1d: out
b_fim = filter_fisher_d[f'convs.{block_idx}.conv{layer_idx+1}.{layer_idx+1}.b_vector'] # 1d: out
fim = (u_fim + v_fim + b_fim) / 2
grouped_fim_conv_d = np.concatenate((grouped_fim_conv_d, fim), axis=None)
filter_fisher_d_interst[f'convs.{block_idx}.conv{layer_idx+1}.{layer_idx}.u_vector'] = filter_fisher_d[f'convs.{block_idx}.conv{layer_idx+1}.{layer_idx}.u_vector']
filter_fisher_d_interst[f'convs.{block_idx}.conv{layer_idx+1}.{layer_idx}.v_vector'] = filter_fisher_d[f'convs.{block_idx}.conv{layer_idx+1}.{layer_idx}.v_vector']
filter_fisher_d_interst[f'convs.{block_idx}.conv{layer_idx+1}.{layer_idx+1}.b_vector'] = filter_fisher_d[f'convs.{block_idx}.conv{layer_idx+1}.{layer_idx+1}.b_vector']
# for skip layers
if layer_idx == 1:
u_fim = filter_fisher_d[f'convs.{block_idx}.skip.{layer_idx}.u_vector'].mean() # 1d: in * k * k
v_fim = filter_fisher_d[f'convs.{block_idx}.skip.{layer_idx}.v_vector'] # 1d: out
fim = u_fim + v_fim
grouped_fim_conv_d = np.concatenate((grouped_fim_conv_d, fim), axis=None)
filter_fisher_d_interst[f'convs.{block_idx}.skip.{layer_idx}.u_vector'] = filter_fisher_d[f'convs.{block_idx}.skip.{layer_idx}.u_vector']
filter_fisher_d_interst[f'convs.{block_idx}.skip.{layer_idx}.v_vector'] = filter_fisher_d[f'convs.{block_idx}.skip.{layer_idx}.v_vector']
cutline_d_conv = np.percentile(grouped_fim_conv_d, q=args.fisher_quantile)
# Obtain decisions for D
idx_kml_filter_fisher_d = dict()
idx_ft_filter_fisher_d = dict()
for key in filter_fisher_d_interst:
if 'skip' not in key and 'u_vector' in key:
# resemble FIM
u_fim = filter_fisher_d_interst[key].mean()
v_fim = filter_fisher_d_interst[key.replace('u_vector', 'v_vector')]
b_fim = filter_fisher_d_interst[key.replace(f'{key[-10]}.u_vector', f'{str(int(key[-10])+1)}.b_vector')]
fim = (u_fim + v_fim + b_fim) / 2
# apply heuristics
idx_kml_filter_fisher_d[key.replace('u_vector', 'v_vector')] = np.where(fim > cutline_d_conv)[0]
idx_ft_filter_fisher_d[key.replace('u_vector', 'v_vector')] = np.where(fim <= cutline_d_conv)[0]
idx_kml_filter_fisher_d[key.replace(f'{key[-10]}.u_vector', f'{str(int(key[-10])+1)}.b_vector')] = np.where(fim > cutline_d_conv)[0]
idx_ft_filter_fisher_d[key.replace(f'{key[-10]}.u_vector', f'{str(int(key[-10])+1)}.b_vector')] = np.where(fim <= cutline_d_conv)[0]
elif 'skip' in key and 'u_vector' in key:
# resemble FIM
u_fim = filter_fisher_d_interst[key].mean()
v_fim = filter_fisher_d_interst[key.replace('u_vector', 'v_vector')]
fim = u_fim + v_fim
# apply heuristics
idx_kml_filter_fisher_d[key.replace('u_vector', 'v_vector')] = np.where(fim > cutline_d_conv)[0]
idx_ft_filter_fisher_d[key.replace('u_vector', 'v_vector')] = np.where(fim <= cutline_d_conv)[0]
# -------------------------------- #
# AdAM: Main Adaptation
# -------------------------------- #
if get_rank() == 0 and wandb and args.wandb:
run = wandb.init(project=args.wandb_project_name, name=args.wandb_run_name, reinit=True)
# initialize the models using styleGAN2, with KML Module
generator = Generator(args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier).to(device)
g_ema = Generator(args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier).to(device)
discriminator = Discriminator(args.size, channel_multiplier=args.channel_multiplier).to(device)
g_dict = generator.state_dict()
d_dict = discriminator.state_dict()
if args.ckpt_source is not None:
ckpt_source_path = os.path.join("./_pretrained/", args.ckpt_source)
print("load model:", args.ckpt_source)
assert args.source_key in args.ckpt_source
ckpt_source = torch.load(ckpt_source_path, map_location=lambda storage, loc: storage)
generator.load_state_dict(ckpt_source["g"], strict=False)
g_ema.load_state_dict(ckpt_source["g_ema"], strict=False)
discriminator.load_state_dict(ckpt_source["d"], strict=False)
# trainable parameters in G
for name, param in generator.named_parameters():
if name.find('u_vector') >= 0:
param.requires_grad = True
elif name.find('v_vector') >= 0:
param.requires_grad = True
elif name.find('b_vector') >= 0:
param.requires_grad = True
# also compute grad for all conv blocks
elif name.find('convs') >= 0:
param.requires_grad = True
else:
param.requires_grad = False
# key-words of trainable parameters in D
d_fine_tune = ['final', 'u_vector', 'v_vector', 'b_vector', 'convs']
for name, param in discriminator.named_parameters():
d_flag = 0
for key in d_fine_tune:
if key in name:
param.requires_grad = True
d_flag += 1
if d_flag == 0:
param.requires_grad = False
if 'convs.0.0.weight' in name or 'convs.0.1.bias' in name:
param.requires_grad = False
# print the number of trainable parameters
get_parameter_number(generator, name=f'Generator-filter-level-init')
get_parameter_number(discriminator, name=f'Discriminator-filter-level-init')
# ---------------------------------------------------------------------- #
# ---------------------------------------------------------------------- #
## final generated results
g_ema.eval()
g_reg_ratio = args.g_reg_every / (args.g_reg_every + 1)
d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
g_optim = optim.Adam(
generator.parameters(),
lr=args.lr * g_reg_ratio,
betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio),
)
d_optim = optim.Adam(
discriminator.parameters(),
lr=args.lr * d_reg_ratio,
betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
)
geneator_new = nn.parallel.DataParallel(generator)
g_ema = nn.parallel.DataParallel(g_ema)
discriminator = nn.parallel.DataParallel(discriminator)
# ---------------------------------------------------------------------- #
# ---------------------------------------------------------------------- #
# ---------------------------------------------------------------------- #
# define the evaluator
if get_rank() == 0:
x_real_test = utils.get_nsamples_lmdb(test_loader, args.n_sample_test, set_len=test_dataset.length)
# to compute IS and FID
evaluator = Evaluator(args, g_ema,
batch_size=args.batch,
device=device,
fid_real_samples=x_real_test,
inception_nsamples=args.n_sample_test,
fid_sample_size=args.n_sample_test)
x_real = utils.get_nsamples_lmdb(train_loader, 10)
utils.save_images(x_real, os.path.join(args.output_path, 'real.png'), nrow=5)
del x_real_test
# 4. training.
train(args, train_loader, generator, discriminator, g_optim, d_optim, g_ema, device)