forked from nod-ai/transformer-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fusion_embedlayer.py
539 lines (446 loc) · 25.6 KB
/
fusion_embedlayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
#-------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
#--------------------------------------------------------------------------
from typing import Dict, List, Tuple, Union
from logging import getLogger
from onnx import helper, TensorProto, NodeProto
from onnx_model import OnnxModel
from fusion_base import Fusion
from fusion_utils import FusionUtils
logger = getLogger(__name__)
class FusionEmbedLayerNoMask(Fusion):
"""
Fuse embedding layer into one node (EmbedLayerNormalization).
It supports the following model types: BERT, DistilBert, ALBert.
"""
def __init__(self, model: OnnxModel, description: str = 'no mask'):
super().__init__(model, "EmbedLayerNormalization", ["LayerNormalization", "SkipLayerNormalization"],
description)
self.utils = FusionUtils(model)
self.shape_infer_helper = self.model.infer_runtime_shape({}, update=True)
# The following will be reset in each fuse call of FusionEmbedLayerNormalization
self.attention = None
self.embed_node = None
def match_two_gather(self, add: NodeProto) -> Union[None, Tuple[NodeProto, NodeProto]]:
gather_0_path = self.model.match_parent_path(add, ['Gather'], [0])
if gather_0_path is None:
return None
gather_1_path = self.model.match_parent_path(add, ['Gather'], [1])
if gather_1_path is None:
return None
return gather_0_path[0], gather_1_path[0]
def check_attention_subgraph(self, layernorm: NodeProto, input_name_to_nodes: Dict[str, List[NodeProto]],
is_distil_bert: bool) -> bool:
"""Check that LayerNormalization has a child of Attention node or subgraph like Attention.
Args:
layernorm (NodeProto): LayerNormalization node
input_name_to_nodes (Dict[str, List[NodeProto]]): map from input name to nodes
is_distil_bert (bool): whether it is DistilBert or not
Returns:
bool: whether there is Attention node or subgraph like Attention
"""
self.attention = self.model.find_first_child_by_type(layernorm,
'Attention',
input_name_to_nodes,
recursive=False)
if self.attention is None:
# In case user disables attention fusion, check whether subgraph looks like Attention.
if layernorm.output[0] not in input_name_to_nodes:
return False
children = input_name_to_nodes[layernorm.output[0]]
# For Albert, there is MatMul+Add after embedding layer before attention.
if len(children) == 1 and children[0].op_type == "MatMul" and children[0].output[0] in input_name_to_nodes:
grandchildren = input_name_to_nodes[children[0].output[0]]
if len(grandchildren) == 1 and grandchildren[0].op_type == "Add" and grandchildren[0].output[
0] in input_name_to_nodes:
nodes = input_name_to_nodes[grandchildren[0].output[0]]
for node in nodes:
if node.op_type == "Attention":
self.attention = node
return True
children_types = sorted([child.op_type for child in nodes])
else:
children_types = sorted([child.op_type for child in children])
# Two Shape nodes might be merged by ORT
if is_distil_bert:
# SkipLayerNormailization might exist when model has been optimized by ORT first.
if children_types != ['MatMul', 'MatMul', 'MatMul', 'Shape', 'SkipLayerNormalization'] and \
children_types != ['Add', 'MatMul', 'MatMul', 'MatMul', 'Shape', 'Shape'] and \
children_types != ['Add', 'MatMul', 'MatMul', 'MatMul', 'Shape']:
logger.debug("No Attention like subgraph in children of LayerNormalization")
return False
else:
if children_types != ['Add', 'MatMul', 'MatMul', 'MatMul'] and \
children_types != ['MatMul', 'MatMul', 'MatMul', 'SkipLayerNormalization']:
logger.debug("No Attention like subgraph in children of LayerNormalization")
return False
return True
def match_position_embedding_distilbert(self, position_embedding_gather, input_ids, output_name_to_node):
""" Match position embedding path from input_ids to Gather for DistilBert.
Pattern is like the following:
(input_ids)
|
Shape
| \
| Gather (indices=1)
| |
| Cast (optional)
| |
| Range (start=0, end=*, delta=1)
| |
| Unsqueeze
| /
Expand
|
Gather
"""
path1 = self.model.match_parent_path(position_embedding_gather, ['Expand', 'Shape'], [1, 1])
if path1 is None:
return False
expand, shape = path1
if shape.input[0] != input_ids:
return False
_, path2, _ = self.model.match_parent_paths(expand, [(['Unsqueeze', 'Range', 'Cast', 'Gather', 'Shape'], [0, 0, 1, 0, 0]), \
(['Unsqueeze', 'Range', 'Gather', 'Shape'], [0, 0, 1, 0])], output_name_to_node)
if path2 is None:
return False
range_node = path2[1]
if not (self.utils.check_node_input_value(range_node, 0, 0)
and self.utils.check_node_input_value(range_node, 2, 1)):
return False
gather_node = path2[-2]
if not (self.utils.check_node_input_value(gather_node, 1, 1)):
return False
shape_node = path2[-1]
if shape_node.input[0] != input_ids:
return False
return True
def match_position_embedding_roberta(self, position_embedding_gather, input_ids, output_name_to_node):
""" Match position embedding path from input_ids to Gather for Roberta.
Roberta Embedding Layer Pattern (* is optional since it might be removed by ORT, ? is the padding word id):
(input_ids) --> Equal(B=?) -- Not -- Cast(to=6) -- CumSum(axis=1) -- Mul -- Cast(to=7) -- Add(B=1) -- Cast(to=7)* --> Gather
| ^
V |
+------------------------------+
Roberta new pattern from transformers v4.9:
(input_ids) --> Equal(B=?) -- Not -- Cast(to=6) -- CumSum(axis=1) -- Add(B=0) -- Mul -- Cast(to=7) -- Add(B=1) --> Gather
| ^
V |
+-------------------------------------------+
start_node = position_embedding_gather
start_index = 1
# match optional Cast node.
parent = self.model.get_parent(start_node, start_index, output_name_to_node)
if parent is None:
return
if parent.op_type == "Cast":
if OnnxModel.get_node_attribute(parent, "to") != 7:
return
start_node = parent
start_index = 0
i, path, return_indices = self.model.match_parent_paths(
start_node,
[ (['Add', 'Cast', 'Mul', 'CumSum', 'Cast', 'Not', 'Equal'], [start_index, 0, 0, 0, 0, 0, 0]),
(['Add', 'Cast', 'Mul', 'Add', 'CumSum', 'Cast', 'Not', 'Equal'], [start_index, 0, 0, 0, 0, 0, 0, 0])],
output_name_to_node)
if path is not None:
# constant input of Add shall be 1.
i, value = self.model.get_constant_input(path[0])
if value != 1:
return False
_, self.padding_word_id = self.model.get_constant_input(path[-1])
return input_ids == path[-1].input[0]
"""
return False
def match_position_embedding_bert(self, position_embedding_gather, input_ids, output_name_to_node):
""" Match position embedding path from input_ids to Gather for BERT.
BERT Embedding Layer Pattern:
(input_ids)
/ \
/ Shape
/ |
/ Gather (indices=1)
/ |
/ Add (optional, B=0)
/ |
Gather (segment_ids) Unsqueeze (axes=0)
\ | |
\ Gather Slice (data[1,512], starts=0, ends=*, axes=1, steps=1)
\ / |
Add Gather
\ /
Add
|
LayerNormalization
"""
path = self.model.match_parent_path(position_embedding_gather, ['Slice', 'Unsqueeze'], [1, 2],
output_name_to_node)
if path is None:
return False
slice, unsqueeze = path
slice_weight = self.model.get_constant_value(slice.input[0])
if not (slice_weight is not None and len(slice_weight.shape) == 2 and slice_weight.shape[0] == 1 \
and self.utils.check_node_input_value(slice, 1, [0]) \
and self.utils.check_node_input_value(slice, 3, [1]) \
and (len(slice.input) == 4 or self.utils.check_node_input_value(slice, 4, [1]))):
return False
opset_version = self.model.get_opset_version()
if opset_version < 13:
if not FusionUtils.check_node_attribute(unsqueeze, 'axes', [0]):
return False
else:
if not self.utils.check_node_input_value(unsqueeze, 1, [0]):
return False
node = self.model.get_parent(unsqueeze, 0, output_name_to_node)
if node is None:
return False
if node.op_type == "Add":
if not self.utils.check_node_input_value(node, 1, 0):
return False
gather = self.model.get_parent(node, 0, output_name_to_node)
else:
gather = node
if gather is None or gather.op_type != "Gather":
return False
if not (self.utils.check_node_input_value(gather, 1, 1)):
return False
shape = self.model.get_parent(gather, 0, output_name_to_node)
if shape is None or shape.op_type != "Shape":
return False
return input_ids == shape.input[0]
def match_position_embedding(self, position_embedding_gather, input_ids, output_name_to_node):
if self.match_position_embedding_bert(position_embedding_gather, input_ids, output_name_to_node):
return True
# TODO: Support roberta (position starts from 2 instead of 0) in EmbedLayerNormalization kernel
# related: https://github.com/huggingface/transformers/issues/10736
#if self.match_position_embedding_roberta(position_embedding_gather, input_ids, output_name_to_node):
# return True
if self.match_position_embedding_distilbert(position_embedding_gather, input_ids, output_name_to_node):
return True
return False
def check_embedding(self, word_embedding_gather, segment_embedding_gather, position_embedding_gather):
"""Sanity check of embedding weights, and match hidden_size of weights and shape of inputs.
"""
input_ids = word_embedding_gather.input[1]
segment_ids = segment_embedding_gather.input[1] if segment_embedding_gather else None
position_ids = position_embedding_gather.input[1]
if self.shape_infer_helper is not None:
input_ids_shape = self.shape_infer_helper.get_edge_shape(input_ids)
position_ids_shape = self.shape_infer_helper.get_edge_shape(position_ids)
assert input_ids_shape and position_ids_shape
if not (len(input_ids_shape) == 2 and len(position_ids_shape) == 2
and input_ids_shape[1] == position_ids_shape[1]):
logger.info(
"Cannot fuse EmbedLayerNormalization: input_ids and position_ids not matched in 2nd dimension: {} vs {}"
.format(input_ids_shape, position_ids_shape))
return False
if segment_ids and not self.shape_infer_helper.compare_shape(input_ids, segment_ids):
logger.info(
"Cannot fuse EmbedLayerNormalization: input_ids and segment_ids does not have same shape: {} != {}".
format(input_ids_shape, self.shape_infer_helper.get_edge_shape(segment_ids)))
return False
word_embedding_table = self.model.get_constant_value(word_embedding_gather.input[0])
if word_embedding_table is None or len(word_embedding_table.shape) != 2:
logger.info("Cannot fuse EmbedLayerNormalization: word embedding table is not expected")
return False
position_embedding_table = self.model.get_constant_value(position_embedding_gather.input[0])
if position_embedding_table is None or len(position_embedding_table.shape) != 2 or (
word_embedding_table.shape[1] != position_embedding_table.shape[1]):
logger.info("Cannot fuse EmbedLayerNormalization: position embedding table is not expected")
return False
if segment_ids:
segment_embedding_table = self.model.get_constant_value(segment_embedding_gather.input[0])
if segment_embedding_table is None or len(segment_embedding_table.shape) != 2 or (
word_embedding_table.shape[1] != segment_embedding_table.shape[1]):
logger.info("Cannot fuse EmbedLayerNormalization: segment embedding table is not expected")
return False
# In normal case, word embeding table is the largest, and segment embedding table is the smallest, while postion embedding table is in between.
# TODO: use other information (like initializer names) to identify different embedding weights automatically.
if word_embedding_table.shape[0] <= position_embedding_table.shape[0]:
logger.warning(
f"word_embedding_table ({word_embedding_gather.input[0]}) size {word_embedding_table.shape[0]} <= position_embedding_table ({position_embedding_gather.input[0]}) size {position_embedding_table.shape[0]}"
)
if segment_ids:
if word_embedding_table.shape[0] <= segment_embedding_table.shape[0]:
logger.warning(
f"word_embedding_table ({word_embedding_gather.input[0]}) size {word_embedding_table.shape[0]} <= segment_embedding_table ({segment_embedding_gather.input[0]}) size {segment_embedding_table.shape[0]}"
)
if position_embedding_table.shape[0] <= segment_embedding_table.shape[0]:
logger.warning(
f"position_embedding_table ({position_embedding_gather.input[0]}) size {position_embedding_table.shape[0]} <= segment_embedding_table ({segment_embedding_gather.input[0]}) size {segment_embedding_table.shape[0]}"
)
return True
def cast_to_int32(self, input_name: str) -> Tuple[str, Union[None, NodeProto]]:
"""Cast a graph input or node input to int32.
Args:
input_name (str): name of graph input or node input
Returns:
A tuple of casted input name and the cast node.
int32_output (str): If input is int32, it is the input name, Otherwise it is output name of Cast node.
input_cast_node (Union[None, NodeProto]): Cast node. It could be None if input is int32.
"""
input_cast_node = None
graph_input = self.model.find_graph_input(input_name)
if graph_input is not None:
if graph_input.type.tensor_type.elem_type != TensorProto.INT32:
int32_output, input_cast_node = self.utils.cast_input_to_int32(input_name)
else:
int32_output = input_name
else:
int32_output, input_cast_node = self.utils.cast_input_to_int32(input_name)
return int32_output, input_cast_node
def create_fused_node(self, input_ids: str, layernorm: NodeProto, word_embedding_gather: NodeProto,
position_embedding_gather: NodeProto, segment_embedding_gather: Union[None, NodeProto]):
"""Create an EmbedLayerNormalization node. Note that segment embedding is optional.
Args:
input_ids (str): input_ids for word embeddings
layernorm (NodeProto): LayerNormalization or SkipLayerNormalization node.
word_embedding_gather (NodeProto): the Gather node for word embedding
position_embedding_gather (NodeProto): the Gather node for position embedding
segment_embedding_gather (Union[None, NodeProto]): the Gather node for segment embedding, or None.
Returns:
NodeProto: the EmbedLayerNormalization node created.
"""
nodes_to_add = []
input_ids, _ = self.cast_to_int32(input_ids)
node_name = self.model.create_node_name('EmbedLayerNormalization')
if layernorm.op_type == "LayerNormalization":
gamma = layernorm.input[1]
beta = layernorm.input[2]
else: # SkipLayerNormalization
gamma = layernorm.input[2]
beta = layernorm.input[3]
embed_node_inputs = None
if segment_embedding_gather is not None:
segment_ids, _ = self.cast_to_int32(segment_embedding_gather.input[1])
embed_node_inputs = [
input_ids, segment_ids, word_embedding_gather.input[0], position_embedding_gather.input[0],
segment_embedding_gather.input[0], gamma, beta
]
else: # no segment embedding
embed_node_inputs = [
input_ids, '', word_embedding_gather.input[0], position_embedding_gather.input[0], '', gamma, beta
]
embed_node = helper.make_node('EmbedLayerNormalization',
embed_node_inputs,
outputs=[node_name + "_output", node_name + "_dummy_mask_index"],
name=node_name)
embed_node.domain = "com.microsoft"
# Pass attribute "epsilon" from normalize node to EmbedLayerNormalization.
for att in layernorm.attribute:
if att.name == 'epsilon':
embed_node.attribute.extend([att])
# Set default value to 1e-12 if no attribute is found.
# OnnxRuntime 1.2.0 or older has no epsilon attribute. The optimized model can only work for 1.3.0 or later.
if len(embed_node.attribute) == 0:
embed_node.attribute.extend([helper.make_attribute("epsilon", 1.0E-12)])
# Make sure new EmbedLayerNormalization node is the last one in self.nodes_to_add.
nodes_to_add.append(embed_node)
for node in nodes_to_add:
self.node_name_to_graph_name[node.name] = self.this_graph_name
self.nodes_to_add.extend(nodes_to_add)
self.embed_node = embed_node
return embed_node
def finish_fusion(self, layernorm, embed_node):
self.model.replace_input_of_all_nodes(layernorm.output[0], embed_node.output[0])
# use prune graph to remove nodes that is not needed
self.prune_graph = True
def fuse_distilbert(self, layernorm, add_before_layernorm, input_name_to_nodes, output_name_to_node):
"""Fuse embedding layer for DistilBert
Args:
layernorm (NodeProto): node of LayerNormalization or SkipLayerNormalization
add_before_layernorm (NodeProto): the Add node before LayerNormalization, or the SkipLayerNormalization itself
input_name_to_nodes (Dict[str, List[NodeProto]]): map from input name to nodes
output_name_to_node (Dict[str, List[NodeProto]]): map from output name to nodes
"""
# DistilBert has no segment embedding, subgraph pattern is like
# input_ids
# | \
# | (position_embedding_subgraph)
# | |
# Gather Gather
# \ /
# Add
# |
# LayerNormalization
two_gather = self.match_two_gather(add_before_layernorm)
if two_gather is None:
return False
word_embedding_gather, position_embedding_gather = two_gather
input_ids = word_embedding_gather.input[1]
if not self.check_attention_subgraph(layernorm, input_name_to_nodes, is_distil_bert=True):
return False
if not self.match_position_embedding(position_embedding_gather, input_ids, output_name_to_node):
return False
if not self.check_embedding(word_embedding_gather, None, position_embedding_gather):
return False
embed_node = self.create_fused_node(input_ids, layernorm, word_embedding_gather, position_embedding_gather,
None)
self.finish_fusion(layernorm, embed_node)
return True
def fuse_bert(self, layernorm, add_before_layernorm, input_name_to_nodes, output_name_to_node):
"""Fuse embedding layer for Bert
Args:
layernorm (NodeProto): node of LayerNormalization or SkipLayerNormalization
add_before_layernorm (NodeProto): the Add node before LayerNormalization, or the SkipLayerNormalization itself
input_name_to_nodes (Dict[str, List[NodeProto]]): map from input name to nodes
output_name_to_node (Dict[str, List[NodeProto]]): map from output name to nodes
"""
add_2_gather = self.model.match_parent_path(add_before_layernorm, ['Add'], [0])
if add_2_gather is None:
return False
two_gather = self.match_two_gather(add_2_gather[0])
if two_gather is None:
return False
word_embedding_gather, segment_embedding_gather = two_gather
input_ids = word_embedding_gather.input[1]
if not self.check_attention_subgraph(layernorm, input_name_to_nodes, is_distil_bert=False):
return False
position_embedding_path = self.model.match_parent_path(add_before_layernorm, ['Gather'], [1])
if position_embedding_path is None:
return False
position_embedding_gather = position_embedding_path[0]
if not self.match_position_embedding(position_embedding_gather, input_ids, output_name_to_node):
if not self.match_position_embedding(segment_embedding_gather, input_ids, output_name_to_node):
return False
# position and segment are switched
temp = segment_embedding_gather
segment_embedding_gather = position_embedding_gather
position_embedding_gather = temp
if not self.check_embedding(word_embedding_gather, segment_embedding_gather, position_embedding_gather):
return False
embed_node = self.create_fused_node(input_ids, layernorm, word_embedding_gather, position_embedding_gather,
segment_embedding_gather)
self.finish_fusion(layernorm, embed_node)
return True
def fuse(self, node, input_name_to_nodes, output_name_to_node):
if node.op_type == "LayerNormalization":
first_add_path = self.model.match_parent_path(node, ['Add'], [0])
if first_add_path is None:
return
add_before_layernorm = first_add_path[0]
else: # SkipLayerNormalization
add_before_layernorm = node # Add is fused into SkipLayerNormalization
if self.fuse_distilbert(node, add_before_layernorm, input_name_to_nodes, output_name_to_node):
return
if self.fuse_bert(node, add_before_layernorm, input_name_to_nodes, output_name_to_node):
return
class FusionEmbedLayerNormalization(FusionEmbedLayerNoMask):
def __init__(self, model: OnnxModel):
super().__init__(model, "with mask")
def fuse(self, node, input_name_to_nodes, output_name_to_node):
# Reset attention and embed_node so that we know fusion is successful when they are not None.
self.attention = None
self.embed_node = None
super().fuse(node, input_name_to_nodes, output_name_to_node)
if self.attention and self.embed_node:
mask_index = self.attention.input[3]
if mask_index in output_name_to_node:
node = output_name_to_node[mask_index]
if node.op_type == "ReduceSum":
embed_node = self.embed_node
mask_input_name = node.input[0]
self.nodes_to_remove.extend([node])
embed_node.input.append(mask_input_name)
embed_node.output[1] = mask_index