forked from nod-ai/transformer-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fusion_gpt_attention.py
384 lines (337 loc) · 17.8 KB
/
fusion_gpt_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
#-------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
#--------------------------------------------------------------------------
import numpy as np
from logging import getLogger
from onnx import helper, numpy_helper, TensorProto
from onnx_model import OnnxModel
from fusion_base import Fusion
from fusion_utils import FusionUtils
logger = getLogger(__name__)
class FusionGptAttentionPastBase(Fusion):
"""Base class for GPT Attention Fusion with past state
"""
def __init__(self, model: OnnxModel, num_heads: int):
super().__init__(model, "Attention", "LayerNormalization", "with past")
self.num_heads = num_heads
self.utils = FusionUtils(model)
self.casted_attention_mask = {} # map from name of attention mask to the name that casted to int32
def match_past_pattern_1(self, concat_k, concat_v, output_name_to_node):
# Pattern 1:
# {past}
# / \
# / \
# Gather(axes=0, indices=0) Gather(indices=1)
# | |
# Transpose (perm=0,1,3,2) |
# | |
# Concat_k Concat_v
# | /
# Transpose (perm=0,1,3,2) /
# | /
# Unsqueeze Unsqueeze
# \ /
# \ /
# Concat
# |
# {present}
gather = self.model.get_parent(concat_v, 0, output_name_to_node)
if gather.op_type != 'Gather':
logger.debug("match_past_pattern_1: expect Gather for past")
return None
if not self.model.find_constant_input(gather, 1) == 1:
logger.debug("match_past_pattern_1: expect indices=1 for Gather of past")
return None
past = gather.input[0]
past_k_nodes = self.model.match_parent_path(concat_k, ['Transpose', 'Gather'], [0, 0])
if past_k_nodes is None:
logger.debug("match_past_pattern_1: failed match Transpose and Gather")
return None
gather_past_k = past_k_nodes[-1]
if not self.model.find_constant_input(gather_past_k, 0) == 1:
logger.debug("match_past_pattern_1: expect indices=0 for Gather k of past")
return None
past_k = gather_past_k.input[0]
if past != past_k:
logger.debug("match_past_pattern_1: expect past to be same")
return None
return past
def match_past_pattern_2(self, concat_k, concat_v, output_name_to_node):
# Pattern 2:
# Split (QKV)
# / | |
# / | +----------------------+
# | |
# | {past} |
# | | |
# Reshape Split Reshape
# | / \ |
# Transpose_k Squeeze Squeeze Transpose_v
# | | \ /
# +------|---+ \ /
# | | \ /
# Concat_k Concat_v
# | |
# Unsqueeze Unsqueeze
# \ /
# Concat
# |
# {present}
#
squeeze = self.model.get_parent(concat_v, 0, output_name_to_node)
if squeeze.op_type != 'Squeeze':
logger.debug("match_past_pattern_2: expect Squeeze as parent of concat_v")
return None
split = self.model.get_parent(squeeze, 0, output_name_to_node)
if split.op_type != "Split":
logger.debug("match_past_pattern_2: expect Split for past path")
return None
opset_version = self.model.get_opset_version()
if opset_version < 13:
if not FusionUtils.check_node_attribute(squeeze, 'axes', [0]):
logger.debug("match_past_pattern_2: axes != [0] for Squeeze in past path")
return None
if not FusionUtils.check_node_attribute(split, 'split', [1, 1]):
logger.debug("match_past_pattern_2: split != [1, 1] for Split in past path")
return None
else:
if not self.utils.check_node_input_value(squeeze, 1, [0]):
logger.debug("match_past_pattern_2: axes != [0] for Squeeze in past path")
return None
if not self.utils.check_node_input_value(split, 1, [1, 1]):
logger.debug("match_past_pattern_2: split != [1, 1] for Split in past path")
return None
if not FusionUtils.check_node_attribute(split, 'axis', 0, default_value=0):
logger.debug("match_past_pattern_2: attribute axis of Split are not expected in past path")
return None
past = split.input[0]
past_k_nodes = self.model.match_parent_path(concat_k, ['Squeeze', 'Split'], [0, 0])
if past_k_nodes is None:
logger.debug("match_past_pattern_2: failed to match past_k_nodes path")
return None
past_k = past_k_nodes[-1].input[0]
if past != past_k:
logger.info("match_past_pattern_2: expect past to be same")
return None
return past
def match_present(self, concat_v, input_name_to_nodes):
unsqueeze_present_v = self.model.find_first_child_by_type(concat_v,
'Unsqueeze',
input_name_to_nodes,
recursive=False)
if not unsqueeze_present_v:
logger.info("expect unsqueeze for present")
return None
concat_present = self.model.find_first_child_by_type(unsqueeze_present_v,
'Concat',
input_name_to_nodes,
recursive=False)
if not concat_present:
logger.info("expect concat for present")
return None
present = concat_present.output[0]
return present
def cast_attention_mask(self, input_name):
if input_name in self.casted_attention_mask:
attention_mask_input_name = self.casted_attention_mask[input_name]
elif self.model.find_graph_input(input_name):
casted, attention_mask_input_name = self.utils.cast_graph_input_to_int32(input_name)
self.casted_attention_mask[input_name] = attention_mask_input_name
else:
attention_mask_input_name, cast_node = self.utils.cast_input_to_int32(input_name)
self.casted_attention_mask[input_name] = attention_mask_input_name
return attention_mask_input_name
class FusionGptAttention(FusionGptAttentionPastBase):
"""
Fuse GPT-2 Attention with past state subgraph into one Attention node.
"""
def __init__(self, model: OnnxModel, num_heads: int):
super().__init__(model, num_heads)
def create_attention_node(self, fc_weight, fc_bias, gemm_qkv, past, present, input, output, mask,
is_unidirectional):
attention_node_name = self.model.create_node_name('GptAttention')
attention_node = helper.make_node('Attention',
inputs=[input, fc_weight, fc_bias, mask, past],
outputs=[attention_node_name + "_output", present],
name=attention_node_name)
attention_node.domain = "com.microsoft"
attention_node.attribute.extend([
helper.make_attribute("num_heads", self.num_heads),
helper.make_attribute("unidirectional", 1 if is_unidirectional else 0)
])
matmul_node = helper.make_node('MatMul',
inputs=[attention_node_name + "_output", gemm_qkv.input[1]],
outputs=[attention_node_name + "_matmul_output"],
name=attention_node_name + "_matmul")
add_node = helper.make_node('Add',
inputs=[attention_node_name + "_matmul_output", gemm_qkv.input[2]],
outputs=[output],
name=attention_node_name + "_add")
self.nodes_to_add.extend([attention_node, matmul_node, add_node])
self.node_name_to_graph_name[attention_node.name] = self.this_graph_name
self.node_name_to_graph_name[matmul_node.name] = self.this_graph_name
self.node_name_to_graph_name[add_node.name] = self.this_graph_name
def fuse(self, normalize_node, input_name_to_nodes, output_name_to_node):
past = None
present = None
return_indice = []
qkv_nodes = self.model.match_parent_path(
normalize_node,
['Add', 'Reshape', 'Gemm', 'Reshape', 'Reshape', 'Transpose', 'MatMul'],
[0, None, 0, 0, 0, 0, 0],
output_name_to_node=output_name_to_node,
return_indice=return_indice
) # yapf: disable
if qkv_nodes is None:
return
(add_qkv, reshape_qkv, gemm_qkv, reshape_1, reshape_2, transpose_qkv, matmul_qkv) = qkv_nodes
another_input = add_qkv.input[1 - return_indice[0]]
v_nodes = self.model.match_parent_path(matmul_qkv, ['Concat', 'Transpose', 'Reshape', 'Split'], [1, 1, 0, 0])
if v_nodes is None:
logger.debug("fuse_attention: failed to match v path")
return
(concat_v, transpose_v, reshape_v, split_fc) = v_nodes
fc_nodes = self.model.match_parent_path(split_fc, ['Reshape', 'Gemm', 'Reshape', 'LayerNormalization'],
[0, 0, 0, 0], output_name_to_node)
if fc_nodes is None:
fc_nodes = self.model.match_parent_path(split_fc, ['Add', 'MatMul', 'LayerNormalization'], [0, None, 0],
output_name_to_node)
if fc_nodes is None:
logger.debug("fuse_attention: failed to match fc path")
return
fc_weight = fc_nodes[1].input[1]
i, _ = self.model.get_constant_input(fc_nodes[0])
fc_bias = fc_nodes[0].input[i]
else:
fc_weight = fc_nodes[1].input[1]
fc_bias = fc_nodes[1].input[2]
layernorm_before_attention = fc_nodes[-1]
if not another_input in layernorm_before_attention.input:
logger.debug("Add and LayerNormalization shall have one same input")
return
is_unidirectional = True
slice_mask = None
input_mask_nodes = None
concat_k_to_match = None
qk_nodes = self.model.match_parent_path(matmul_qkv, ['Softmax', 'Sub', 'Mul', 'Div', 'MatMul'], [0, 0, 0, 0, 0])
if qk_nodes is not None:
(softmax_qk, sub_qk, mul_qk, div_qk, matmul_qk) = qk_nodes
mask_nodes = self.model.match_parent_path(
sub_qk,
['Mul', 'Sub', 'Slice', 'Slice', 'Unsqueeze', 'Sub', 'Squeeze', 'Slice', 'Shape', 'Div'],
[1, 0, 1, 0, 1, 0, 0, 0, 0, 0]) # yapf: disable
if mask_nodes is None:
logger.debug("fuse_attention: failed to match unidirectional mask path")
return
div_mask = mask_nodes[-1]
slice_mask = mask_nodes[3]
if div_qk != div_mask:
logger.debug("fuse_attention: skip since div_qk != div_mask")
return
else:
# New pattern for gpt2 from PyTorch 1.5.0 and Transformers 2.9.0.
i, qk_nodes, _ = self.model.match_parent_paths(
matmul_qkv, [(['Softmax', 'Where', 'Div', 'MatMul'], [0, 0, 1, 0]),
(['Softmax', 'Add', 'Where', 'Div', 'MatMul'], [0, 0, None, 1, 0])], output_name_to_node)
if qk_nodes is None:
logger.debug("fuse_attention: failed to match qk nodes")
return
where_qk = qk_nodes[-3]
div_qk = qk_nodes[-2]
matmul_qk = qk_nodes[-1]
if i == 1:
add_qk = qk_nodes[1]
_, input_mask_nodes, _ = self.model.match_parent_paths(
add_qk,
[
(['Mul', 'Sub', 'Cast', 'Unsqueeze', 'Unsqueeze', 'Reshape'], [None, 0, 1, 0, 0, 0]),
(['Mul', 'Sub', 'Unsqueeze', 'Unsqueeze', 'Reshape'], [None, 0, 1, 0, 0]),
(['Mul', 'Sub', 'Unsqueeze', 'Unsqueeze'], [None, 0, 1, 0]), # useless cast and reshape are removed.
],
output_name_to_node) # yapf: disable
if input_mask_nodes is None:
logger.debug("fuse_attention: failed to match input attention mask path")
return
mask_nodes = self.model.match_parent_path(
where_qk,
['Cast', 'Slice', 'Slice', 'Unsqueeze', 'Sub', 'Squeeze', 'Slice', 'Shape'],
[ 0, 0, 0, 1, 0, 0, 0, 0],
output_name_to_node) # yapf: disable
if mask_nodes is None:
# TODO: match mask path for GPT2LMHeadModel_BeamSearchStep.
logger.debug("fuse_attention: failed to match mask path")
return
slice_mask = mask_nodes[2]
div_or_concat = self.model.get_parent(mask_nodes[-1], 0, output_name_to_node)
if div_or_concat.op_type == "Div":
div_mask = div_or_concat
if div_qk != div_mask:
logger.debug("fuse_attention: skip since div_qk != div_mask")
return
elif div_or_concat.op_type == "Concat":
concat_k_to_match = div_or_concat
else:
logger.debug("fuse_attention: failed to match mask path")
# Validate that the mask data is either lower triangular (unidirectional) or all ones
mask_data = numpy_helper.to_array(self.model.get_initializer(slice_mask.input[0]))
if not (len(mask_data.shape) == 4 and mask_data.shape[:2] == (1, 1)
and mask_data.shape[2] == mask_data.shape[3]):
logger.debug("fuse_attention: skip since mask shape is not 1x1xWxW")
return
if np.allclose(mask_data, np.ones_like(mask_data)):
is_unidirectional = False
elif not np.allclose(mask_data, np.tril(np.ones_like(mask_data))):
logger.debug("fuse_attention: skip since mask is neither lower triangular nor ones")
return
q_nodes = self.model.match_parent_path(matmul_qk, ['Transpose', 'Reshape', 'Split'], [0, 0, 0])
if q_nodes is None:
logger.debug("fuse_attention: failed to match q path")
return
(transpose_q, reshape_q, split_q) = q_nodes
if split_fc != split_q:
logger.debug("fuse_attention: skip since split_fc != split_q")
return
k_nodes = self.model.match_parent_path(matmul_qk, ['Concat', 'Transpose', 'Reshape', 'Split'], [1, 1, 0, 0])
if k_nodes is None:
# This pattern is from pytorch 1.7.1 and transformers 4.6.1
k_nodes = self.model.match_parent_path(matmul_qk, ['Transpose', 'Concat', 'Transpose', 'Reshape', 'Split'],
[1, 0, 1, 0, 0])
if k_nodes is None:
logger.debug("fuse_attention: failed to match k path")
return
else:
(_, concat_k, transpose_k, reshape_k, split_k) = k_nodes
else:
(concat_k, transpose_k, reshape_k, split_k) = k_nodes
if split_fc != split_k:
logger.debug("fuse_attention: skip since split_fc != split_k")
return
if concat_k_to_match and concat_k != concat_k_to_match:
logger.debug("fuse_attention: skip since concat_k != concat_k_to_match")
return
attention_mask_input_name = ''
if input_mask_nodes is not None:
input_name = input_mask_nodes[-1].input[0]
attention_mask_input_name = self.cast_attention_mask(input_name)
# Match past and present paths
past = self.match_past_pattern_1(concat_k, concat_v, output_name_to_node) or \
self.match_past_pattern_2(concat_k, concat_v, output_name_to_node)
if past is None:
logger.info("fuse_attention: failed to match past path")
return
if not self.model.find_graph_input(past):
logger.debug("past is not graph input.")
# For GPT2LMHeadModel_BeamSearchStep, there is an extra Gather node to select beam index so it is not graph input.
present = self.match_present(concat_v, input_name_to_nodes)
if present is None:
logger.info("fuse_attention: failed to match present path")
return
if not self.model.find_graph_output(present):
logger.info("expect present to be graph output")
return
self.create_attention_node(fc_weight, fc_bias, gemm_qkv, past, present, layernorm_before_attention.output[0],
reshape_qkv.output[0], attention_mask_input_name, is_unidirectional)
# we rely on prune_graph() to clean old subgraph nodes:
# qk_nodes + q_nodes + k_nodes + v_nodes + mask_nodes + [reshape_qkv, transpose_qkv, matmul_qkv]
self.prune_graph = True