-
Notifications
You must be signed in to change notification settings - Fork 2
/
figure_1s3_read_through_and_new_tss_examples.Rmd
137 lines (101 loc) · 4.72 KB
/
figure_1s3_read_through_and_new_tss_examples.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
``` {r setup, echo=FALSE, message=FALSE, results="hide"}
library(xtable)
library(ggplot2)
library(plyr)
library(GenomicRanges)
knitr.figure_dir <- "figure_1s3_read_through_and_new_tss_examples_output"
source("shared_code/knitr_common.r")
source("shared_code/rdata_common.r")
source("shared_code/granges_common.r")
source("shared_code/flybase.r")
````
# Figure: Examples of Pol II read-through and un-annotated TSSs
**Project:** `r knitr.project_name`
**Author:** [Jeff Johnston](mailto:[email protected])
**Generated:** `r format(Sys.time(), "%a %b %d %Y, %I:%M %p")`
## Pol II read through
``` {r pol_read_though, echo=FALSE, message=FALSE, fig.cap="", fig.width=15, fig.height=5}
load_sample <- function(s) {
updateObject(get(load(paste(rdata_base_path(), "/", s, ".cov.RData", sep=""))))
}
# ##FIX
tp2.pol <- load_sample("preMBT_pol_2")
tp2.tbp <- load_sample("preMBT_tbp_1")
tp3.pol <- load_sample("MBT_pol_3")
tp3.tbp <- load_sample("MBT_tbp_2")
tp4.pol <- load_sample("postMBT_pol_1")
tp4.tbp <- load_sample("postMBT_tbp_1")
ex1 <- data.frame(chr="chr3R", start=4515001, end=4525000)
ex2 <- data.frame(chr="chr2R", start=15550001, end=15560000)
ex3 <- data.frame(chr="chr3L", start=16105001, end=16115000)
ex4 <- data.frame(chr="chr3R", start=4103001, end=4106000)
ex5 <- data.frame(chr="chr3L", start=18737001, end=18740000) # expand
ex6 <- data.frame(chr="chr2L", start=4682001, end=4690000) # expand
examples.df <- rbind(ex1, ex2, ex3, ex4, ex5, ex6)
# expand 5 and 6 by 50%
examples.df <- transform(examples.df, midpoint = (end + start) / 2,
width = end - start + 1)
examples.df[5:6, ] <- transform(examples.df[5:6, ], start = midpoint - (width * 1.5) / 2,
end = midpoint + (width * 1.5) / 2)
examples.df$midpoint <- NULL
examples.df$width <- NULL
reads_from_cov <- function(cov, chr, start, end, name, norm_target=150*10000000) {
reads <- as.integer(cov[[as.character(chr)]][start:end]) / total_signal(cov) * norm_target
data.frame(position=start:end, reads=reads, name=name)
}
txs <- flybase_txs_granges()
txs <- unlist(reduce(split(txs, values(txs)$fb_gene_id)), use.names=TRUE)
values(txs)$fb_gene_id <- names(txs)
names(txs) <- NULL
find_genes_in_window <- function(chr, window_start, window_end) {
txs.df <- merge(as.data.frame(txs), flybase_txs()[, c("fb_symbol", "fb_gene_id")])
txs.df <- subset(txs.df, seqnames == chr & start >= window_start & end <= window_end)
txs.df
}
saved_figures <- list()
for(i in 1:nrow(examples.df)) {
chr <- as.character(examples.df$chr[i])
start_pos <- examples.df$start[i]
end_pos <- examples.df$end[i]
reads.pre_mbt <- rbind(reads_from_cov(tp2.pol, chr, start_pos, end_pos, "Pol II"),
reads_from_cov(tp2.tbp, chr, start_pos, end_pos, "TBP"))
reads.mbt <- rbind(reads_from_cov(tp3.pol, chr, start_pos, end_pos, "Pol II"),
reads_from_cov(tp3.tbp, chr, start_pos, end_pos, "TBP"))
reads.post_mbt <- rbind(reads_from_cov(tp4.pol, chr, start_pos, end_pos, "Pol II"),
reads_from_cov(tp4.tbp, chr, start_pos, end_pos, "TBP"))
reads.pre_mbt$tp <- "pre-MBT"
reads.mbt$tp <- "MBT"
reads.post_mbt$tp <- "post-MBT"
reads <- rbind(reads.pre_mbt, reads.mbt, reads.post_mbt)
genes.df <- find_genes_in_window(chr, start_pos, end_pos)
max.reads <- max(reads$reads)
block.height <- max.reads * 0.10
genes.df$y_start <- -1 * 0.5 * block.height
genes.df$y_stop <- genes.df$y_start - block.height
genes.df <- transform(genes.df, text_pos_x = (start + end) / 2,
text_pos_y = (y_start + y_stop) / 2)
reads$tp <- factor(reads$tp, levels=c("pre-MBT", "MBT", "post-MBT"))
g <- ggplot(reads, aes(x=position, y=reads, fill=name)) +
geom_area(position="identity", alpha=0.75) +
geom_rect(data=genes.df, inherit.aes=FALSE, color="black", fill="gray50", alpha=0.5, aes(xmin=start, xmax=end, ymin=y_start, ymax=y_stop)) +
geom_text(data=genes.df, inherit.aes=FALSE, color="white", aes(x=text_pos_x, y=text_pos_y, label=fb_symbol)) +
scale_fill_manual("Factor", values=c("Pol II"="#1E1E78", "TBP"="#F8426D")) +
facet_wrap(~ tp, ncol=3) +
theme_bw() +
labs(x=sprintf("Position on %s", chr), y="Normalized reads") +
theme(panel.grid=element_blank())
saved_figures[[i]] <- g
print(g)
}
````
``` {r print_to_pdf, echo=FALSE, include=FALSE}
pdf(figure_path("examples.pdf"), width=21, height=5, onefile=T)
nothing <- lapply(saved_figures, print)
dev.off()
````
## Un-annotated TSSs
## Session information
For reproducibility, this analysis was performed with the following R/Bioconductor session:
``` {r session_info, echo=FALSE}
sessionInfo()
````