本项目是基于RSNN的模拟小鼠决策任务的程序。程序模拟了小鼠的感知、工作记忆和决策实验。实验设定小鼠在丁字形通道内,先经过带有提示信息的通道,再经过没有信息的通道,最终路口处决定左转或右转。通过奖励信息对小鼠行为进行训练。本程序通过计算建模对此实验进行模拟。搭建RSNN循环脉冲神经网络模拟小鼠大脑活动,通过监督训练模拟小鼠的学习行为,最终使得网络具有感知、工作记忆和决策能力。
详细报告内容见 小组项目报告
- Python >=3.6
- Pytorch =1.12.1
- braincog =0.2.7.15
- matplotlib =3.6.2
To install the most recent stable release from the GitHub repository
pip install git+https://github.com/jdy18/Crossing.git
To run a script of the RSNN with trainging method of e-prop, issue
python main.py
All simulations run on Ubuntu 16.04 LTS with Intel(R) Xeon(R) CPU E5-2687W v3 @ 3.10GHz, 128Gb RAM @ 2133MHz, and two GeForce GTX TITAN X (GM200) GPUs. Python 3.6 is used in all cases. Clock time was recorded for each simulation run.