forked from bubbliiiing/pspnet-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
267 lines (228 loc) · 11.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import time
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torchvision.models as models
import numpy as np
from tqdm import tqdm
from torchvision import models
from torch.autograd import Variable
from PIL import Image
from torch import nn
from nets.pspnet import PSPNet
from nets.pspnet_training import CE_Loss,Dice_loss
from utils.metrics import f_score
from torch.utils.data import DataLoader
from utils.dataloader import pspnet_dataset_collate, PSPnetDataset
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def fit_one_epoch(net,epoch,epoch_size,epoch_size_val,gen,genval,Epoch,cuda,aux_branch):
net = net.train()
total_loss = 0
total_f_score = 0
val_toal_loss = 0
val_total_f_score = 0
start_time = time.time()
with tqdm(total=epoch_size,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(gen):
if iteration >= epoch_size:
break
imgs, pngs, labels = batch
with torch.no_grad():
imgs = Variable(torch.from_numpy(imgs).type(torch.FloatTensor))
pngs = Variable(torch.from_numpy(pngs).type(torch.FloatTensor)).long()
labels = Variable(torch.from_numpy(labels).type(torch.FloatTensor))
if cuda:
imgs = imgs.cuda()
pngs = pngs.cuda()
labels = labels.cuda()
#-------------------------------#
# 判断是否使用辅助分支并回传
#-------------------------------#
optimizer.zero_grad()
if aux_branch:
aux_outputs, outputs = net(imgs)
aux_loss = CE_Loss(aux_outputs, pngs, num_classes = NUM_CLASSES)
main_loss = CE_Loss(outputs, pngs, num_classes = NUM_CLASSES)
loss = aux_loss + main_loss
if dice_loss:
aux_dice = Dice_loss(aux_outputs, labels)
main_dice = Dice_loss(outputs, labels)
loss = loss + aux_dice + main_dice
else:
outputs = net(imgs)
loss = CE_Loss(outputs, pngs, num_classes = NUM_CLASSES)
if dice_loss:
main_dice = Dice_loss(outputs, labels)
loss = loss + main_dice
with torch.no_grad():
#-------------------------------#
# 计算f_score
#-------------------------------#
_f_score = f_score(outputs, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
total_f_score += _f_score.item()
waste_time = time.time() - start_time
pbar.set_postfix(**{'total_loss': total_loss / (iteration + 1),
'f_score' : total_f_score / (iteration + 1),
's/step' : waste_time,
'lr' : get_lr(optimizer)})
pbar.update(1)
start_time = time.time()
print('Start Validation')
with tqdm(total=epoch_size_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(genval):
if iteration >= epoch_size_val:
break
imgs, pngs, labels = batch
with torch.no_grad():
imgs = Variable(torch.from_numpy(imgs).type(torch.FloatTensor))
pngs = Variable(torch.from_numpy(pngs).type(torch.FloatTensor)).long()
labels = Variable(torch.from_numpy(labels).type(torch.FloatTensor))
if cuda:
imgs = imgs.cuda()
pngs = pngs.cuda()
labels = labels.cuda()
#-------------------------------#
# 判断是否使用辅助分支
#-------------------------------#
if aux_branch:
aux_outputs, outputs = net(imgs)
aux_loss = CE_Loss(aux_outputs, pngs, num_classes = NUM_CLASSES)
main_loss = CE_Loss(outputs, pngs, num_classes = NUM_CLASSES)
val_loss = aux_loss + main_loss
if dice_loss:
aux_dice = Dice_loss(aux_outputs, labels)
main_dice = Dice_loss(outputs, labels)
val_loss = val_loss + aux_dice + main_dice
else:
outputs = net(imgs)
val_loss = CE_Loss(outputs, pngs, num_classes = NUM_CLASSES)
if dice_loss:
main_dice = Dice_loss(outputs, labels)
val_loss = val_loss + main_dice
#-------------------------------#
# 计算f_score
#-------------------------------#
_f_score = f_score(outputs, labels)
val_toal_loss += val_loss.item()
val_total_f_score += _f_score.item()
pbar.set_postfix(**{'total_loss': val_toal_loss / (iteration + 1),
'f_score' : val_total_f_score / (iteration + 1),
'lr' : get_lr(optimizer)})
pbar.update(1)
print('Finish Validation')
print('Epoch:'+ str(epoch+1) + '/' + str(Epoch))
print('Total Loss: %.4f || Val Loss: %.4f ' % (total_loss/(epoch_size+1),val_toal_loss/(epoch_size_val+1)))
print('Saving state, iter:', str(epoch+1))
torch.save(model.state_dict(), 'logs/Epoch%d-Total_Loss%.4f-Val_Loss%.4f.pth'%((epoch+1),total_loss/(epoch_size+1),val_toal_loss/(epoch_size_val+1)))
if __name__ == "__main__":
inputs_size = [473,473,3]
log_dir = "logs/"
#---------------------#
# 分类个数+1
# 2+1
#---------------------#
NUM_CLASSES = 21
#--------------------------------------------------------------------#
# 建议选项:
# 种类少(几类)时,设置为True
# 种类多(十几类)时,如果batch_size比较大(10以上),那么设置为True
# 种类多(十几类)时,如果batch_size比较小(10以下),那么设置为False
#---------------------------------------------------------------------#
dice_loss = False
#-------------------------------#
# 主干网络预训练权重的使用
# mobilenet和resnet50
#-------------------------------#
pretrained = False
backbone = "mobilenet"
#---------------------#
# 是否使用辅助分支
# 会占用大量显存
#---------------------#
aux_branch = False
#---------------------#
# 下采样的倍数
# 8和16
#---------------------#
downsample_factor = 16
#-------------------------------#
# Cuda的使用
#-------------------------------#
Cuda = True
model = PSPNet(num_classes=NUM_CLASSES, backbone=backbone, downsample_factor=downsample_factor, pretrained=pretrained, aux_branch=aux_branch).train()
#-------------------------------------------#
# 权值文件的下载请看README
# 权值和主干特征提取网络一定要对应
#-------------------------------------------#
model_path = r"model_data/pspnet_mobilenetv2.pth"
# 加快模型训练的效率
print('Loading weights into state dict...')
model_dict = model.state_dict()
pretrained_dict = torch.load(model_path)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print('Finished!')
if Cuda:
net = torch.nn.DataParallel(model)
cudnn.benchmark = True
net = net.cuda()
# 打开数据集的txt
with open(r"VOCdevkit/VOC2007/ImageSets/Segmentation/train.txt","r") as f:
train_lines = f.readlines()
# 打开数据集的txt
with open(r"VOCdevkit/VOC2007/ImageSets/Segmentation/val.txt","r") as f:
val_lines = f.readlines()
#------------------------------------------------------#
# 主干特征提取网络特征通用,冻结训练可以加快训练速度
# 也可以在训练初期防止权值被破坏。
# Init_Epoch为起始世代
# Interval_Epoch为冻结训练的世代
# Epoch总训练世代
# 提示OOM或者显存不足请调小Batch_size
#------------------------------------------------------#
if True:
lr = 1e-4
Init_Epoch = 0
Interval_Epoch = 50
Batch_size = 8
optimizer = optim.Adam(model.parameters(),lr)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer,step_size=1,gamma=0.9)
train_dataset = PSPnetDataset(train_lines, inputs_size, NUM_CLASSES, True)
val_dataset = PSPnetDataset(val_lines, inputs_size, NUM_CLASSES, False)
gen = DataLoader(train_dataset, batch_size=Batch_size, num_workers=1, pin_memory=True,
drop_last=True, collate_fn=pspnet_dataset_collate)
gen_val = DataLoader(val_dataset, batch_size=Batch_size, num_workers=4,pin_memory=True,
drop_last=True, collate_fn=pspnet_dataset_collate)
epoch_size = max(1, len(train_lines)//Batch_size)
epoch_size_val = max(1, len(val_lines)//Batch_size)
for param in model.backbone.parameters():
param.requires_grad = False
for epoch in range(Init_Epoch,Interval_Epoch):
fit_one_epoch(model,epoch,epoch_size,epoch_size_val,gen,gen_val,Interval_Epoch,Cuda,aux_branch)
lr_scheduler.step()
if True:
lr = 1e-5
Interval_Epoch = 50
Epoch = 100
Batch_size = 4
optimizer = optim.Adam(model.parameters(),lr)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer,step_size=1,gamma=0.9)
train_dataset = PSPnetDataset(train_lines, inputs_size, NUM_CLASSES, True)
val_dataset = PSPnetDataset(val_lines, inputs_size, NUM_CLASSES, False)
gen = DataLoader(train_dataset, batch_size=Batch_size, num_workers=4, pin_memory=True,
drop_last=True, collate_fn=pspnet_dataset_collate)
gen_val = DataLoader(val_dataset, batch_size=Batch_size, num_workers=4,pin_memory=True,
drop_last=True, collate_fn=pspnet_dataset_collate)
epoch_size = max(1, len(train_lines)//Batch_size)
epoch_size_val = max(1, len(val_lines)//Batch_size)
for param in model.backbone.parameters():
param.requires_grad = True
for epoch in range(Interval_Epoch,Epoch):
fit_one_epoch(model,epoch,epoch_size,epoch_size_val,gen,gen_val,Epoch,Cuda,aux_branch)
lr_scheduler.step()