Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

导数公式 #18

Open
zhouhaibing089 opened this issue Nov 6, 2016 · 1 comment
Open

导数公式 #18

zhouhaibing089 opened this issue Nov 6, 2016 · 1 comment
Labels

Comments

@zhouhaibing089
Copy link
Owner

zhouhaibing089 commented Nov 6, 2016

常数函数

f(x)=C
f'(x)=\lim_{\Delta x\to0}{{f(x_0+\Delta x)-f(x_0)}\over\Delta x}={{C-C}\over\Delta x}=0

代数函数

f(x)=x^n
f'(x)=\lim_{\Delta x\to0}{{(x_0+\Delta x)^n-x_0^n}\over \Delta x}
f'(x)=\lim_{\Delta x \to0}{{{n \choose 0}x_0^n\Delta x^0+{n \choose 1}x_0^{n-1}\Delta x^1+\cdots+{n \choose {n-1}}x_0^1\Delta x^{n-1}+{n \choose n}x_0^0\Delta x^n-x_0^n}\over \Delta x}
f'(x)=\lim_{\Delta x \to0}{{n \choose 1}x_0^{n-1}\Delta x^0+{{n \choose 2}x_0^{n-2}\Delta x^1}+\cdots+{n \choose {n-1}}x_0^1\Delta x^{n-2}+{n \choose n}x_0^0\Delta x^{n-1}}
f'(x)={n \choose 1}x_0^{n-1}=nx_0^{n-1}

对数函数

f(x)=\ln x
f'(x)={\lim_{\Delta x\to0}}{{\ln(x_0+\Delta x)-\ln(x_0)}\over\Delta x}=\ln(1+{\Delta x\over x_0})^{1\over \Delta x}
令:
u={x_0\over\Delta x}\Rightarrow u\to \infty
f'(x)=\ln(1+{1\over u})^{u{1\over x_0}}={1\over x_0}\ln(1+{1\over u})^u
所以:
f'(x)={1\over x_0}\ln e={1\over x_0}

指数函数

f(x)=e^x
y=\ln e^x=x \Rightarrow y'={1\over e^x}(e^x)'=x'=1 \Rightarrow f'(x)=(e^x)'=e^x

正弦函数

f(x)=\sin x
f'(x)=\lim_{\Delta x\to0}{{\sin(x_0+\Delta x)-\sin x_0}\over\Delta x}
f'(x)=\lim_{\Delta x\to0}{{\sin x_0\cos\Delta x+\cos x_0\sin\Delta x-\sin x_0}\over\Delta x}
f'(x)=\lim_{\Delta x\to0}{{\cos x_0\sin\Delta x}\over\Delta x}=\cos x_0

余弦函数

f(x)=\cos x
f'(x)=\lim_{\Delta x\to0}{{\cos(x_0+\Delta x)-\cos x_0}\over\Delta x}
f'(x)=\lim_{\Delta x\to0}{{\cos x_0\cos\Delta x-\sin x_0\sin\Delta x-\cos x_0}\over\Delta x}
f'(x)=\lim_{\Delta x\to0}{{-\sin x_0\sin\Delta x}\over\Delta x}=-\sin x_0

正切函数

f(x)=\tan x={\sin x \over \cos x}
f'(x)={{\sin'x\cos x-\sin x\cos'x}\over{\cos^2x}}={{\cos^2x+\sin^2x}\over\cos^2x}
f'(x)={1\over\cos^2x}={\sec^2x}

余切函数

f(x)=\cot x={\cos x\over \sin x}
f'(x)={{\cos'x\sin x-\cos x\sin'x}\over\sin^2x}={{-\sin^2x-\cos^2x}\over\sin^2x}
f'(x)={-1\over\sin^2x}=-\csc^2x

正割函数

f(x)=\sec x={1\over\cos x}
f'(x)=-\cos^{-2}x\cos'x={\sin x\over\cos^2x}=\tan x\sec x

余割函数

f(x)=\csc x={1\over\sin x}
f'(x)=-sin^{-2}x\sin'x={-\cos x\over\sin^2x}=-\cot x\csc x

反正弦函数

f(x)=\arcsin x,f(x)\in({-\pi\over2},{\pi\over2})
y=\sin(\arcsin x)=x\Rightarrow y'=\cos(\arcsin x)\arcsin'x=1
f'(x)={1\over\cos(\arcsin x)}={1\over\sqrt{1-\sin^2{\arcsin x}}}={1\over\sqrt{1-x^2}}

反余弦函数

f(x)=\arccos x={\pi\over2}-\arcsin x,f(x)\in(0,\pi)
f'(x)=-\arcsin'x=-{1\over\sqrt{1-x^2}}

反正切函数

f(x)=\arctan x,f(x)\in({-\pi\over2},{\pi\over2})
y=\tan(\arctan x)=x\Rightarrow y'=\sec^2(\arctan x)\arctan'x=1
f'(x)={1\over\sec^2(\arctan x)}={1\over{1+\tan^2(\arctan x)}}={1\over{1+x^2}}

反余切函数

f(x)=\operatorname{arccot} x={\pi\over2}-\arctan x,f(x)\in(0,\pi)
f'(x)=-\arctan'x=-{1\over{1+x^2}}

反正割函数

f(x)=\operatorname{arcsec}x,f(x)\in[0,{\pi\over2})\cup({\pi\over2},\pi]
y=\sec(\operatorname{arcsec}x)=x\Rightarrow y'=\tan(\operatorname{arcsec}x)\sec(\operatorname{arcsec}x)\operatorname{arcsec}'x=1
f'(x)={1\over{|x|\tan(\operatorname{arcsec}x)}}={1\over{|x|\sqrt{\sec^2(\operatorname{arcsec}x)-1}}}={1\over{|x|\sqrt{x^2-1}}}

反余割函数

f(x)=\operatorname{arccsc} x={\pi\over2}-\operatorname{arcsec}x,f(x)\in[-{\pi\over2},0)\cup(0,{\pi\over2}]
f'(x)=-\operatorname{arcsec}'x=-{1\over{|x|\sqrt{x^2-1}}}

参考资料

@zhouhaibing089 zhouhaibing089 added blog and removed blog labels Dec 11, 2016
@xiaoyu2er
Copy link

海兵哥哥太帅了

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

2 participants