-
Notifications
You must be signed in to change notification settings - Fork 0
/
tracker.py
145 lines (115 loc) · 4.98 KB
/
tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import numpy as np
from numpy import dot
from scipy.linalg import inv, block_diag
class Tracker(): # class for Kalman Filter based tracker
def __init__(self):
# Initialize parametes for tracker (history)
self.id = 0 # tracker's id
self.box = [] # list to store the coordinates for a bounding box
self.hits = 0 # number of detection matches
self.no_losses = 0 # number of unmatched tracks (track loss)
# Initialize parameters for Kalman Filtering
# The state is the (x, y) coordinates of the detection box
# state: [up, up_dot, left, left_dot, down, down_dot, right, right_dot]
# or[up, up_dot, left, left_dot, height, height_dot, width, width_dot]
self.x_state=[]
self.dt = 1. # time interval
# Process matrix, assuming constant velocity model
self.F = np.array([[1, self.dt, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, self.dt, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, self.dt, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 1, self.dt],
[0, 0, 0, 0, 0, 0, 0, 1]])
# Measurement matrix, assuming we can only measure the coordinates
self.H = np.array([[1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0]])
# Initialize the state covariance
self.L = 100.0
self.P = np.diag(self.L*np.ones(8))
# Initialize the process covariance
self.Q_comp_mat = np.array([[self.dt**4/2., self.dt**3/2.],
[self.dt**3/2., self.dt**2]])
self.Q = block_diag(self.Q_comp_mat, self.Q_comp_mat,
self.Q_comp_mat, self.Q_comp_mat)
# Initialize the measurement covariance
self.R_ratio = 1.0/16.0
self.R_diag_array = self.R_ratio * np.array([self.L, self.L, self.L, self.L])
self.R = np.diag(self.R_diag_array)
def update_R(self):
R_diag_array = self.R_ratio * np.array([self.L, self.L, self.L, self.L])
self.R = np.diag(R_diag_array)
def kalman_filter(self, z):
'''
Implement the Kalman Filter, including the predict and the update stages,
with the measurement z
'''
x = self.x_state
# Predict
x = dot(self.F, x)
self.P = dot(self.F, self.P).dot(self.F.T) + self.Q
#Update
S = dot(self.H, self.P).dot(self.H.T) + self.R
K = dot(self.P, self.H.T).dot(inv(S)) # Kalman gain
y = z - dot(self.H, x) # residual
x += dot(K, y)
self.P = self.P - dot(K, self.H).dot(self.P)
self.x_state = x.astype(int) # convert to integer coordinates
#(pixel values)
def predict_only(self):
'''
Implment only the predict stage. This is used for unmatched detections and
unmatched tracks
'''
x = self.x_state
# Predict
x = dot(self.F, x)
self.P = dot(self.F, self.P).dot(self.F.T) + self.Q
self.x_state = x.astype(int)
if __name__ == "__main__":
import matplotlib.pyplot as plt
import glob
import helpers
# Creat an instance
trk = Tracker()
# Test R_ratio
trk.R_ratio = 2.0/16
# Update measurement noise covariance matrix
trk.update_R()
# Initial state
x_init = np.array([390, 0, 1050, 0, 513, 0, 1278, 0])
x_init_box = [x_init[0], x_init[2], x_init[4], x_init[6]]
# Measurement
z=np.array([399, 1022, 504, 1256])
trk.x_state= x_init.T
trk.kalman_filter(z.T)
# Updated state
x_update =trk.x_state
x_updated_box = [x_update[0], x_update[2], x_update[4], x_update[6]]
# print('The initial state is: ', x_init)
# print('The measurement is: ', z)
# print('The update state is: ', x_update)
# Visualize the Kalman filter process and the
# impact of measurement nosie convariance matrix
images = [plt.imread(file) for file in glob.glob('./test_images/*.jpg')]
img=images[3]
plt.figure(figsize=(10, 14))
helpers.draw_box_label(img, x_init_box, box_color=(0, 255, 0))
ax = plt.subplot(3, 1, 1)
plt.imshow(img)
plt.title('Initial: '+str(x_init_box))
helpers.draw_box_label(img, z, box_color=(255, 0, 0))
ax = plt.subplot(3, 1, 2)
plt.imshow(img)
plt.title('Measurement: '+str(z))
helpers.draw_box_label(img, x_updated_box)
ax = plt.subplot(3, 1, 3)
plt.imshow(img)
plt.title('Updated: '+str(x_updated_box))
plt.show()