-
Notifications
You must be signed in to change notification settings - Fork 34
/
pano_opt.py
207 lines (166 loc) · 6.71 KB
/
pano_opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
import torch.optim as optim
import numpy as np
from PIL import Image
import pano
def vecang(vec1, vec2):
vec1 = vec1 / np.sqrt((vec1 ** 2).sum())
vec2 = vec2 / np.sqrt((vec2 ** 2).sum())
return np.arccos(np.dot(vec1, vec2))
def rotatevec(vec, theta):
x = vec[0] * torch.cos(theta) - vec[1] * torch.sin(theta)
y = vec[0] * torch.sin(theta) + vec[1] * torch.cos(theta)
return torch.cat([x, y])
def pts_linspace(pa, pb, pts=300):
pa = pa.view(1, 2)
pb = pb.view(1, 2)
w = torch.arange(0, pts + 1, dtype=pa.dtype).view(-1, 1)
return (pa * (pts - w) + pb * w) / pts
def xyz2uv(xy, z=-1):
c = torch.sqrt((xy ** 2).sum(1))
u = torch.atan2(xy[:, 1], xy[:, 0]).view(-1, 1)
v = torch.atan2(torch.zeros_like(c) + z, c).view(-1, 1)
return torch.cat([u, v], dim=1)
def uv2idx(uv, w, h):
col = (uv[:, 0] / (2 * np.pi) + 0.5) * w - 0.5
row = (uv[:, 1] / np.pi + 0.5) * h - 0.5
return torch.cat([col.view(-1, 1), row.view(-1, 1)], dim=1)
def wallidx(xy, w, h, z1, z2):
col = (torch.atan2(xy[1], xy[0]) / (2 * np.pi) + 0.5) * w - 0.5
c = torch.sqrt((xy ** 2).sum())
row_s = (torch.atan2(torch.zeros_like(c) + z1, c) / np.pi + 0.5) * h - 0.5
row_t = (torch.atan2(torch.zeros_like(c) + z2, c) / np.pi + 0.5) * h - 0.5
pa = torch.cat([col.view(1), row_s.view(1)])
pb = torch.cat([col.view(1), row_t.view(1)])
return pts_linspace(pa, pb)
def map_coordinates(input, coordinates):
''' PyTorch version of scipy.ndimage.interpolation.map_coordinates
input: (H, W)
coordinates: (2, ...)
'''
h = input.shape[0]
w = input.shape[1]
def _coordinates_pad_wrap(h, w, coordinates):
coordinates[0] = coordinates[0] % h
coordinates[1] = coordinates[1] % w
return coordinates
co_floor = torch.floor(coordinates).long()
co_ceil = torch.ceil(coordinates).long()
d1 = (coordinates[1] - co_floor[1].float())
d2 = (coordinates[0] - co_floor[0].float())
co_floor = _coordinates_pad_wrap(h, w, co_floor)
co_ceil = _coordinates_pad_wrap(h, w, co_ceil)
f00 = input[co_floor[0], co_floor[1]]
f10 = input[co_floor[0], co_ceil[1]]
f01 = input[co_ceil[0], co_floor[1]]
f11 = input[co_ceil[0], co_ceil[1]]
fx1 = f00 + d1 * (f10 - f00)
fx2 = f01 + d1 * (f11 - f01)
return fx1 + d2 * (fx2 - fx1)
def pc2cor_id(pc, pc_vec, pc_theta, pc_height):
ps = torch.stack([
(pc + pc_vec),
(pc + rotatevec(pc_vec, pc_theta)),
(pc - pc_vec),
(pc + rotatevec(pc_vec, pc_theta - np.pi))
])
return torch.cat([
uv2idx(xyz2uv(ps, z=-1), 1024, 512),
uv2idx(xyz2uv(ps, z=pc_height), 1024, 512),
], dim=0)
def project2sphere_score(pc, pc_vec, pc_theta, pc_height, scoreedg, scorecor, i_step=None):
# Sample corner loss
corid = pc2cor_id(pc, pc_vec, pc_theta, pc_height)
corid_coordinates = torch.stack([corid[:, 1], corid[:, 0]])
loss_cor = -map_coordinates(scorecor, corid_coordinates).mean()
# Sample boundary loss
p1 = pc + pc_vec
p2 = pc + rotatevec(pc_vec, pc_theta)
p3 = pc - pc_vec
p4 = pc + rotatevec(pc_vec, pc_theta - np.pi)
segs = [
pts_linspace(p1, p2),
pts_linspace(p2, p3),
pts_linspace(p3, p4),
pts_linspace(p4, p1),
]
# wall-wall
# loss_wallwall = 0
# walls_idx = [
# wallidx(p1, 1024, 512, -1, pc_height),
# wallidx(p2, 1024, 512, -1, pc_height),
# wallidx(p3, 1024, 512, -1, pc_height),
# wallidx(p4, 1024, 512, -1, pc_height),
# ]
# for wall_idx in walls_idx:
# wall_coordinates = torch.stack([wall_idx[:, 1], wall_idx[:, 0]])
# loss_wallwall -= map_coordinates(scoreedg[..., 0], wall_coordinates).mean() / len(walls_idx)
# ceil-wall
loss_ceilwall = 0
for seg in segs:
ceil_uv = xyz2uv(seg, z=-1)
ceil_idx = uv2idx(ceil_uv, 1024, 512)
ceil_coordinates = torch.stack([ceil_idx[:, 1], ceil_idx[:, 0]])
loss_ceilwall -= map_coordinates(scoreedg[..., 1], ceil_coordinates).mean() / len(segs)
# floor-wall
loss_floorwall = 0
for seg in segs:
floor_uv = xyz2uv(seg, z=pc_height)
floor_idx = uv2idx(floor_uv, 1024, 512)
floor_coordinates = torch.stack([floor_idx[:, 1], floor_idx[:, 0]])
loss_floorwall -= map_coordinates(scoreedg[..., 2], floor_coordinates).mean() / len(segs)
#losses = 1.0 * loss_cor + 0.1 * loss_wallwall + 0.5 * loss_ceilwall + 1.0 * loss_floorwall
losses = 1.0 * loss_cor + 1.0 * loss_ceilwall + 1.0 * loss_floorwall
if i_step is not None:
with torch.no_grad():
print('step %d: %.3f (cor %.3f, wall %.3f, ceil %.3f, floor %.3f)' % (
i_step, losses,
loss_cor, loss_wallwall,
loss_ceilwall, loss_floorwall))
return losses
def optimize_cor_id(cor_id, scoreedg, scorecor, num_iters=100, verbose=False):
assert scoreedg.shape == (512, 1024, 3)
assert scorecor.shape == (512, 1024)
Z = -1
ceil_cor_id = cor_id[0::2]
floor_cor_id = cor_id[1::2]
ceil_cor_id, ceil_cor_id_xy = pano.constraint_cor_id_same_z(ceil_cor_id, scorecor, Z)
ceil_cor_id_xyz = np.hstack([ceil_cor_id_xy, np.zeros(4).reshape(-1, 1) + Z])
#pc = (ceil_cor_id_xy[0] + ceil_cor_id_xy[2]) / 2
pc = np.mean(ceil_cor_id_xy, axis=0)
pc_vec = ceil_cor_id_xy[0] - pc
pc_theta = vecang(pc_vec, ceil_cor_id_xy[1] - pc)
pc_height = pano.fit_avg_z(floor_cor_id, ceil_cor_id_xy, scorecor)
scoreedg = torch.FloatTensor(scoreedg)
scorecor = torch.FloatTensor(scorecor)
pc = torch.FloatTensor(pc)
pc_vec = torch.FloatTensor(pc_vec)
pc_theta = torch.FloatTensor([pc_theta])
pc_height = torch.FloatTensor([pc_height])
pc.requires_grad = True
pc_vec.requires_grad = True
pc_theta.requires_grad = True
pc_height.requires_grad = True
optimizer = optim.SGD([
pc, pc_vec, pc_theta, pc_height
], lr=1e-3, momentum=0.9)
best = {'score': 1e9}
for i_step in range(num_iters):
i = i_step if verbose else None
optimizer.zero_grad()
score = project2sphere_score(pc, pc_vec, pc_theta, pc_height, scoreedg, scorecor, i)
if score.item() < best['score']:
best['score'] = score.item()
best['pc'] = pc.clone()
best['pc_vec'] = pc_vec.clone()
best['pc_theta'] = pc_theta.clone()
best['pc_height'] = pc_height.clone()
score.backward()
optimizer.step()
pc = best['pc']
pc_vec = best['pc_vec']
pc_theta = best['pc_theta']
pc_height = best['pc_height']
opt_cor_id = pc2cor_id(pc, pc_vec, pc_theta, pc_height).detach().numpy()
opt_cor_id = np.stack([opt_cor_id[:4], opt_cor_id[4:]], axis=1).reshape(8, 2)
return opt_cor_id