Skip to content

Latest commit

 

History

History
219 lines (123 loc) · 4.25 KB

NEWS.md

File metadata and controls

219 lines (123 loc) · 4.25 KB

envalysis 0.7.0

New Features

  • predict() method for class 'calibration'

envalysis 0.6.0

New Features

  • Inverse predict concentrations from calibration curves using inv_predict()
  • as.list() method for class 'calibration'
  • pkgdown documentation

Minor Improvements

  • Code coverage
  • GitHub Actions for macOS
  • Don't export mselect() fork anymore; use drc::mselect() instead

envalysis 0.5.5

Minor Improvements

  • The check_assumptions argument in calibration() is now less verbose; test results may be retrieved by calling print()
  • Replaced size argument in ggplot2::element_rect() and ggplot2::element_line() with linewidth
  • Update SOP for particle size estimations using texture()
  • Changed maintainer email address
  • Corrected typos

envalysis 0.5.4

Bug Fixes

  • skip tests for ggplot2 v3.4.0 due to deprecation warnings; replace size argument in ggplot2::element_rect() with linewidth later

envalysis 0.5.3

Bug Fixes

  • Fixed moved URLs

envalysis 0.5.2

Minor Improvements

  • Update GitHub Actions
  • Tidy news file

Bug Fixes

  • Fix 'invalid nsmall argument' error when using signifig() with certain value combinations

envalysis 0.5.1

New Features

  • Finding optimum weights for weighted calibrations using weight_select()
  • Calculating matrix effects (signal suppression/enhancement) with matrix_effect()
  • calibration() now checks for model assumptions

Minor Improvements

  • Additional "blanks" parameter introduced to calibration(), lod(), and loq()
  • Snapshot testing
  • Improved and more consistent documentation

envalysis 0.4.2

Minor Improvements

  • Move to testthat 3rd edition

Bug Fixes

  • Fix regression when using weights in calibration()

envalysis 0.4.1

New Features

  • First preparations for weights support in calibration()

Minor Improvements

  • Rename master branch to main

Bug Fixes

  • Update testthat::expect_equal() calls to keep compatibility with R 4.1.0

envalysis 0.4.0

Minor Improvements

  • texture() now takes data as formula
  • tibble support for texture()
  • loq() iterates only until significant digits won't change anymore

Bug Fixes

  • Force percentage bounds for texture() to 0 and 100
  • Increased margins for theme_publish()

envalysis 0.3.3

Minor Improvements

  • First CRAN release
  • Better package description

envalysis 0.3.2

Bug Fixes

  • Reimplementation of drc's mselect() for texture() to get rid of global variables

envalysis 0.3.1

Minor Improvements

  • loq() now uses iterations instead of estimating the value from lod()

Bug Fixes

  • Better handling of unbalanced designs in calibration()

Defunct Functions

  • make.raw(), use rep() instead ;-)

envalysis 0.3.0

New Features

  • Starting with testthat

Minor Improvements

  • signifig() supports 'siunitx' LaTeX output
  • Better data handling in calibration()
  • Updated man pages

Bug Fixes

  • theme_publish() updated to work with current ggplot2 versions
  • signifig() can handle zeros better

Defunct Functions

  • puri.test(), use lmer on ranks (lme4) with Type II-ANOVA (car) instead

envalysis 0.2.2

Bug Fixes

  • Temporary fix to make mselect() work
  • TODO: Get rid of assignment to .GlobalEnv

envalysis 0.2.1

Minor Improvements

  • Switch to drc package for texture curve fitting

envalysis 0.2.0

New Features

  • texture class for automatic determination of particle size distribution using a hydrometer in accordance with ASTM D422-63(2007)e2

Minor Improvements

  • updated theme_publish()
  • demo file added

envalysis 0.1.0

Initial Feature Set

  • Confidence intervals CI()
  • Root mean square errors rmse()
  • Limit of detection (LOD) lod()
  • Limit of quantification (LOQ) loq()
  • Various sorption isotherms sorption()
  • Convert frequency data back to raw data make.raw()
  • ANOVA on ranks according to Sen and Puri (also known as Scheirer-Ray-Hare-Test) puri.test()
  • Categorize water drop penetration times according to Bisdom et al. (1993) bisdom()
  • Report significant figures, i.e. round means and erros to the least significant digit, using signifig()
  • Clean, black-and-white ggplot2 theme for scientific publications theme_publish()