We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
:~/autodl-tmp/yolov5_anime# python train.py --hyp ./data/hyp.finetune.yaml --batch-size 4 --epochs 360 --data ./data/anime.yaml --cfg ./models/yolov5x.yaml --weights ./weights/yolov5x_anime.pt Using CUDA device0 _CudaDeviceProperties(name='NVIDIA GeForce RTX 4090', total_memory=24217MB)
Namespace(adam=False, batch_size=4, bucket='', cache_images=False, cfg='./models/yolov5x.yaml', data='./data/anime.yaml', device='', epochs=360, evolve=False, global_rank=-1, hyp='./data/hyp.finetune.yaml', img_size=[640, 640], local_rank=-1, logdir='runs/', multi_scale=False, name='', noautoanchor=False, nosave=False, notest=False, rect=False, resume=False, single_cls=False, sync_bn=False, total_batch_size=4, weights='./weights/yolov5x_anime.pt', world_size=1) Start Tensorboard with "tensorboard --logdir runs/", view at http://localhost:6006/ Hyperparameters {'lr0': 0.01, 'momentum': 0.937, 'weight_decay': 0.0005, 'giou': 0.05, 'cls': 0.5, 'cls_pw': 1.0, 'obj': 1.0, 'obj_pw': 1.0, 'iou_t': 0.2, 'anchor_t': 4.0, 'fl_gamma': 0.0, 'hsv_h': 0.015, 'hsv_s': 0.7, 'hsv_v': 0.4, 'degrees': 0.0, 'translate': 0.5, 'scale': 0.5, 'shear': 0.0, 'perspective': 0.0, 'flipud': 0.0, 'fliplr': 0.5, 'mixup': 0.0} Overriding ./models/yolov5x.yaml nc=1 with nc=20
from n params module arguments
0 -1 1 8800 models.common.Focus [3, 80, 3] 1 -1 1 115520 models.common.Conv [80, 160, 3, 2] 2 -1 1 315680 models.common.BottleneckCSP [160, 160, 4] 3 -1 1 461440 models.common.Conv [160, 320, 3, 2] 4 -1 1 3311680 models.common.BottleneckCSP [320, 320, 12] 5 -1 1 1844480 models.common.Conv [320, 640, 3, 2] 6 -1 1 13228160 models.common.BottleneckCSP [640, 640, 12] 7 -1 1 7375360 models.common.Conv [640, 1280, 3, 2] 8 -1 1 4099840 models.common.SPP [1280, 1280, [5, 9, 13]] 9 -1 1 20087040 models.common.BottleneckCSP [1280, 1280, 4, False] 10 -1 1 820480 models.common.Conv [1280, 640, 1, 1] 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 12 [-1, 6] 1 0 models.common.Concat [1] 13 -1 1 5435520 models.common.BottleneckCSP [1280, 640, 4, False] 14 -1 1 205440 models.common.Conv [640, 320, 1, 1] 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 16 [-1, 4] 1 0 models.common.Concat [1] 17 -1 1 1360960 models.common.BottleneckCSP [640, 320, 4, False] 18 -1 1 922240 models.common.Conv [320, 320, 3, 2] 19 [-1, 14] 1 0 models.common.Concat [1] 20 -1 1 5025920 models.common.BottleneckCSP [640, 640, 4, False] 21 -1 1 3687680 models.common.Conv [640, 640, 3, 2] 22 [-1, 10] 1 0 models.common.Concat [1] 23 -1 1 20087040 models.common.BottleneckCSP [1280, 1280, 4, False] 24 [17, 20, 23] 1 168225 models.yolo.Detect [20, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [320, 640, 1280]] Traceback (most recent call last): File "train.py", line 441, in train(hyp, opt, device, tb_writer) File "train.py", line 68, in train model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create File "/root/autodl-tmp/yolov5_anime/models/yolo.py", line 83, in init self._initialize_biases() # only run once File "/root/autodl-tmp/yolov5_anime/models/yolo.py", line 142, in _initialize_biases b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.
how to solve? Thanks~
The text was updated successfully, but these errors were encountered:
No branches or pull requests
:~/autodl-tmp/yolov5_anime# python train.py --hyp ./data/hyp.finetune.yaml --batch-size 4 --epochs 360 --data ./data/anime.yaml --cfg ./models/yolov5x.yaml --weights ./weights/yolov5x_anime.pt
Using CUDA device0 _CudaDeviceProperties(name='NVIDIA GeForce RTX 4090', total_memory=24217MB)
Namespace(adam=False, batch_size=4, bucket='', cache_images=False, cfg='./models/yolov5x.yaml', data='./data/anime.yaml', device='', epochs=360, evolve=False, global_rank=-1, hyp='./data/hyp.finetune.yaml', img_size=[640, 640], local_rank=-1, logdir='runs/', multi_scale=False, name='', noautoanchor=False, nosave=False, notest=False, rect=False, resume=False, single_cls=False, sync_bn=False, total_batch_size=4, weights='./weights/yolov5x_anime.pt', world_size=1)
Start Tensorboard with "tensorboard --logdir runs/", view at http://localhost:6006/
Hyperparameters {'lr0': 0.01, 'momentum': 0.937, 'weight_decay': 0.0005, 'giou': 0.05, 'cls': 0.5, 'cls_pw': 1.0, 'obj': 1.0, 'obj_pw': 1.0, 'iou_t': 0.2, 'anchor_t': 4.0, 'fl_gamma': 0.0, 'hsv_h': 0.015, 'hsv_s': 0.7, 'hsv_v': 0.4, 'degrees': 0.0, 'translate': 0.5, 'scale': 0.5, 'shear': 0.0, 'perspective': 0.0, 'flipud': 0.0, 'fliplr': 0.5, 'mixup': 0.0}
Overriding ./models/yolov5x.yaml nc=1 with nc=20
0 -1 1 8800 models.common.Focus [3, 80, 3]
1 -1 1 115520 models.common.Conv [80, 160, 3, 2]
2 -1 1 315680 models.common.BottleneckCSP [160, 160, 4]
3 -1 1 461440 models.common.Conv [160, 320, 3, 2]
4 -1 1 3311680 models.common.BottleneckCSP [320, 320, 12]
5 -1 1 1844480 models.common.Conv [320, 640, 3, 2]
6 -1 1 13228160 models.common.BottleneckCSP [640, 640, 12]
7 -1 1 7375360 models.common.Conv [640, 1280, 3, 2]
8 -1 1 4099840 models.common.SPP [1280, 1280, [5, 9, 13]]
9 -1 1 20087040 models.common.BottleneckCSP [1280, 1280, 4, False]
10 -1 1 820480 models.common.Conv [1280, 640, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 models.common.Concat [1]
13 -1 1 5435520 models.common.BottleneckCSP [1280, 640, 4, False]
14 -1 1 205440 models.common.Conv [640, 320, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 models.common.Concat [1]
17 -1 1 1360960 models.common.BottleneckCSP [640, 320, 4, False]
18 -1 1 922240 models.common.Conv [320, 320, 3, 2]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 5025920 models.common.BottleneckCSP [640, 640, 4, False]
21 -1 1 3687680 models.common.Conv [640, 640, 3, 2]
22 [-1, 10] 1 0 models.common.Concat [1]
23 -1 1 20087040 models.common.BottleneckCSP [1280, 1280, 4, False]
24 [17, 20, 23] 1 168225 models.yolo.Detect [20, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [320, 640, 1280]]
Traceback (most recent call last):
File "train.py", line 441, in
train(hyp, opt, device, tb_writer)
File "train.py", line 68, in train
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
File "/root/autodl-tmp/yolov5_anime/models/yolo.py", line 83, in init
self._initialize_biases() # only run once
File "/root/autodl-tmp/yolov5_anime/models/yolo.py", line 142, in _initialize_biases
b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.
how to solve? Thanks~
The text was updated successfully, but these errors were encountered: