This DGL example implements the GNN model proposed in the paper Position-aware Graph Neural Networks. For the original implementation, see here.
Contributor: RecLusIve-F
The codebase is implemented in Python 3.8. For version requirement of packages, see below.
dgl 0.7.2
numpy 1.21.2
torch 1.10.1
networkx 2.6.3
scikit-learn 1.0.2
- Download datasets from here
- Extract zip folder in this directory
# Communities-T
python main.py --task link
# Communities
python main.py --task link --inductive
# Communities
python main.py --task link_pair --inductive
Link prediction (Grid-T and Communities-T refer to the transductive learning setting of Grid and Communities)
Dataset | Communities-T | Communities |
---|---|---|
ROC AUC ( P-GNN-E-2L in Table 1) | 0.988 ± 0.003 | 0.985 ± 0.008 |
ROC AUC (DGL: P-GNN-E-2L) | 0.984 ± 0.010 | 0.991 ± 0.004 |
Dataset | Communities |
---|---|
ROC AUC ( P-GNN-E-2L in Table 1) | 1.0 ± 0.001 |
ROC AUC (DGL: P-GNN-E-2L) | 1.0 ± 0.000 |