-
Notifications
You must be signed in to change notification settings - Fork 0
/
pointnet_cls.py
136 lines (111 loc) · 4.63 KB
/
pointnet_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
class PointNetCls(nn.Module):
def __init__(self, output_classes, input_dims=3, conv1_dim=64,
dropout_prob=0.5, use_transform=True):
super(PointNetCls, self).__init__()
self.input_dims = input_dims
self.conv1 = nn.ModuleList()
self.conv1.append(nn.Conv1d(input_dims, conv1_dim, 1))
self.conv1.append(nn.Conv1d(conv1_dim, conv1_dim, 1))
self.conv1.append(nn.Conv1d(conv1_dim, conv1_dim, 1))
self.bn1 = nn.ModuleList()
self.bn1.append(nn.BatchNorm1d(conv1_dim))
self.bn1.append(nn.BatchNorm1d(conv1_dim))
self.bn1.append(nn.BatchNorm1d(conv1_dim))
self.conv2 = nn.ModuleList()
self.conv2.append(nn.Conv1d(conv1_dim, conv1_dim * 2, 1))
self.conv2.append(nn.Conv1d(conv1_dim * 2, conv1_dim * 16, 1))
self.bn2 = nn.ModuleList()
self.bn2.append(nn.BatchNorm1d(conv1_dim * 2))
self.bn2.append(nn.BatchNorm1d(conv1_dim * 16))
self.maxpool = nn.MaxPool1d(conv1_dim * 16)
self.pool_feat_len = conv1_dim * 16
self.mlp3 = nn.ModuleList()
self.mlp3.append(nn.Linear(conv1_dim * 16, conv1_dim * 8))
self.mlp3.append(nn.Linear(conv1_dim * 8, conv1_dim * 4))
self.bn3 = nn.ModuleList()
self.bn3.append(nn.BatchNorm1d(conv1_dim * 8))
self.bn3.append(nn.BatchNorm1d(conv1_dim * 4))
self.dropout = nn.Dropout(0.3)
self.mlp_out = nn.Linear(conv1_dim * 4, output_classes)
self.use_transform = use_transform
if use_transform:
self.transform1 = TransformNet(input_dims)
self.trans_bn1 = nn.BatchNorm1d(input_dims)
self.transform2 = TransformNet(conv1_dim)
self.trans_bn2 = nn.BatchNorm1d(conv1_dim)
def forward(self, x):
batch_size = x.shape[0]
h = x.permute(0, 2, 1)
if self.use_transform:
trans = self.transform1(h)
h = h.transpose(2, 1)
h = torch.bmm(h, trans)
h = h.transpose(2, 1)
h = F.relu(self.trans_bn1(h))
for conv, bn in zip(self.conv1, self.bn1):
h = conv(h)
h = bn(h)
h = F.relu(h)
if self.use_transform:
trans = self.transform2(h)
h = h.transpose(2, 1)
h = torch.bmm(h, trans)
h = h.transpose(2, 1)
h = F.relu(self.trans_bn2(h))
for conv, bn in zip(self.conv2, self.bn2):
h = conv(h)
h = bn(h)
h = F.relu(h)
h = self.maxpool(h).view(-1, self.pool_feat_len)
for mlp, bn in zip(self.mlp3, self.bn3):
h = mlp(h)
h = bn(h)
h = F.relu(h)
h = self.dropout(h)
out = self.mlp_out(h)
return out
class TransformNet(nn.Module):
def __init__(self, input_dims=3, conv1_dim=64):
super(TransformNet, self).__init__()
self.conv = nn.ModuleList()
self.conv.append(nn.Conv1d(input_dims, conv1_dim, 1))
self.conv.append(nn.Conv1d(conv1_dim, conv1_dim * 2, 1))
self.conv.append(nn.Conv1d(conv1_dim * 2, conv1_dim * 16, 1))
self.bn = nn.ModuleList()
self.bn.append(nn.BatchNorm1d(conv1_dim))
self.bn.append(nn.BatchNorm1d(conv1_dim * 2))
self.bn.append(nn.BatchNorm1d(conv1_dim * 16))
self.maxpool = nn.MaxPool1d(conv1_dim * 16)
self.pool_feat_len = conv1_dim * 16
self.mlp2 = nn.ModuleList()
self.mlp2.append(nn.Linear(conv1_dim * 16, conv1_dim * 8))
self.mlp2.append(nn.Linear(conv1_dim * 8, conv1_dim * 4))
self.bn2 = nn.ModuleList()
self.bn2.append(nn.BatchNorm1d(conv1_dim * 8))
self.bn2.append(nn.BatchNorm1d(conv1_dim * 4))
self.input_dims = input_dims
self.mlp_out = nn.Linear(conv1_dim * 4, input_dims * input_dims)
def forward(self, h):
batch_size = h.shape[0]
for conv, bn in zip(self.conv, self.bn):
h = conv(h)
h = bn(h)
h = F.relu(h)
h = self.maxpool(h).view(-1, self.pool_feat_len)
for mlp, bn in zip(self.mlp2, self.bn2):
h = mlp(h)
h = bn(h)
h = F.relu(h)
out = self.mlp_out(h)
iden = Variable(torch.from_numpy(np.eye(self.input_dims).flatten().astype(np.float32)))
iden = iden.view(1, self.input_dims * self.input_dims).repeat(batch_size, 1)
if out.is_cuda:
iden = iden.cuda()
out = out + iden
out = out.view(-1, self.input_dims, self.input_dims)
return out