-
Notifications
You must be signed in to change notification settings - Fork 11
/
train.py
196 lines (156 loc) · 5.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
import torchvision
import torchvision.transforms as transforms
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn
import os
import shutil
from net.lenet import *
train_transform=transforms.Compose(
[
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.05, contrast=0.05, saturation=0.05, hue=0.05),
transforms.ToTensor(),
transforms.Normalize((0.485,0.456,0.406),
(0.229,0.224,0.225))]
)
val_transform=transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.485,0.456,0.406),
(0.229,0.224,0.225))]
)
trainset=torchvision.datasets.ImageFolder(root='/home/zhangzhaoyu/pig_train',transform=train_transform)
trainloader=torch.utils.data.DataLoader(
trainset,
batch_size=16,
shuffle=True,
num_workers=12,
pin_memory=True
)
valset=torchvision.datasets.ImageFolder(root='/home/zhangzhaoyu/pig_val',transform=val_transform)
valloader=torch.utils.data.DataLoader(
valset,
batch_size=16,
shuffle=False,
num_workers=12,
pin_memory=True
)
net=torchvision.models.resnet50(num_classes=30)
net=net.cuda()
cudnn.benchmark=True
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
criterion=nn.CrossEntropyLoss().cuda()
lr=0.001
optimizer=optim.SGD(net.parameters(),lr=lr,momentum=0.9)
def train(trainloader,net,criterion,optimizer,epoch):
losses = AverageMeter()
top1 = AverageMeter()
top3 = AverageMeter()
net=net.train()
for i,data in enumerate(trainloader,0):
inputs,labels=data
inputs,labels=Variable(inputs.cuda()),Variable(labels.cuda())
outputs=net(inputs)
loss=criterion(outputs,labels)
prec1, prec3 = accuracy(outputs.data, labels.data, topk=(1, 3))
losses.update(loss.data[0], inputs.size(0))
top1.update(prec1[0], inputs.size(0))
top3.update(prec3[0], inputs.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i % 10 == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@3 {top3.val:.3f} ({top3.avg:.3f})'.format(
epoch, i, len(trainloader), loss=losses, top1=top1, top3=top3))
print 'Finished Training'
def val(valloader,net,criterion):
losses = AverageMeter()
top1 = AverageMeter()
top3 = AverageMeter()
net=net.eval()
for i,data in enumerate(valloader,0):
inputs,labels=data
inputs,labels=Variable(inputs.cuda()),Variable(labels.cuda())
outputs=net(inputs)
loss=criterion(outputs,labels)
prec1, prec3 = accuracy(outputs.data, labels.data, topk=(1, 3))
losses.update(loss.data[0], inputs.size(0))
top1.update(prec1[0], inputs.size(0))
top3.update(prec3[0], inputs.size(0))
if i % 10 == 0:
print('Val: [{0}/{1}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@3 {top3.val:.3f} ({top3.avg:.3f})'.format(
i, len(valloader), loss=losses,
top1=top1, top3=top3))
print(' * Prec@1 {top1.avg:.3f} Prec@3 {top3.avg:.3f}'.format(top1=top1, top3=top3))
return top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'best.pth.tar')
def adjust_learning_rate(lr, optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 10 epochs"""
lr = lr * (0.1 ** (epoch // 10))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
start_epoch=0
epochs=30
best_prec1=0
resume='checkpoint.pth.tar'
if os.path.isfile(resume):
checkpoint = torch.load(resume)
start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
net.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(resume, checkpoint['epoch']))
for epoch in range(start_epoch,epochs):
adjust_learning_rate(lr, optimizer, epoch)
train(trainloader,net,criterion,optimizer,epoch)
prec1=val(valloader,net,criterion)
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': net.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, is_best)