Skip to content

The Merzbild Variable-Weight DSMC/FP code

License

Notifications You must be signed in to change notification settings

ACoM-RWTH/Merzbild.jl

 
 

Repository files navigation

Docs-dev License: MPL2.0 Aqua QA

Merzbild.jl

Merzbild.jl is a work-in-progress DSMC code fully written in Julia, designed to provide all the necessary components to build your own simulations. This means that things like implementing a time loop over timesteps are left to the end user, and the code provides only functionality such as particle sampling and indexing, collisions, merging, computation of physical properties and I/O.

Installation

For now, Merzbild.jl needs to be cloned to be run. Once cloned, navigate to the directory, run julia --project=., and in the Julia interpreter run using Pkg; Pkg.resolve(); Pkg.instantiate() to install the required packages. Running Pkg.test() afterwards will install the test environment dependencies and run the tests.

Usage

Currently, the way to use the code is to 1) clone it 2) create a new file in the simulations directory 3) add include("path/to/src/merzbild.jl") and using ..Merzbild to the file.

Some usage examples can be found in the simulations directory. A detailed overview of the structures required can be found in the documentation (upcoming), but a short code snippet is given below. It simulates the relaxation of two gases initialized at different temperatures to equilibrium.

# assuming the simulation file is directly in the simulations directory
include("../src/Merzbild.jl")
using ..Merzbild
using Random

function run(seed)
    Random.seed!(seed)
    rng = Xoshiro(seed)

    # load species and interaction data
    # path is correct if run from root directory of the Merzbild repo
    species_data = load_species_data("data/particles.toml", ["Ar", "He"])
    interaction_data = load_interaction_data("data/vhs.toml", species_data)
    n_species = length(species_data)

    n_t = 800 # set number of timesteps

    # set numbers of particles/number densities and initial temperatures
    n_particles_Ar = 400
    n_particles_He = 4000
    T0_Ar = 3000.0
    T0_He = 360.0  # equilibrium T = 600.0K
    T0_list = [T0_Ar, T0_He]
    Fnum = 5e12

    # set timestep
    Δt = 2.5e-3

    # set simulation volume (we're doing a 0D simulation)
    V = 1.0

    # create struct for particle indexing
    pia = ParticleIndexerArray([0, 0])

    # sample particles
    particles::Vector{ParticleVector} = [ParticleVector(n_particles_Ar), ParticleVector(n_particles_He)]
    sample_particles_equal_weight!(rng, particles[1], pia, 1, 1, n_particles_Ar, species_data[1].mass, T0_Ar, Fnum, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0)
    sample_particles_equal_weight!(rng, particles[2], pia, 1, 2, n_particles_He, species_data[2].mass, T0_He, Fnum, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0)

    # create struct for computation of physical properties
    phys_props = PhysProps(pia)
    compute_props!(particles, pia, species_data, phys_props)

    # print properties at t=0
    println(phys_props.n)
    println(phys_props.v)
    println(phys_props.T)

    # create struct for output to netCDF file
    ds = NCDataHolder("output_multi_species.nc", species_data, phys_props)
    write_netcdf_phys_props(ds, phys_props, 0)

    # set up collision structs
    collision_factors = create_collision_factors_array(n_species)
    collision_data = CollisionData()
    estimate_sigma_g_w_max!(collision_factors, interaction_data, species_data, T0_list, Fnum)

    # start time loop
    for ts in 1:n_t
        for s2 in 1:n_species
            # collide particles
            for s1 in s2:n_species
                if (s1 == s2)
                    ntc!(rng, collision_factors[s1,s1,1], collision_data, interaction_data, particles[s1], pia, 1, s1, Δt, V)
                else
                    ntc!(rng, collision_factors[s1,s2,1], collision_data, interaction_data, particles[s1], particles[s2],
                         pia, 1, s1, s2, Δt, V)
                end
            end
        end

        # compute and write physical properties
        compute_props!(particles, pia, species_data, phys_props)
        write_netcdf_phys_props(ds, phys_props, ts)
    end

    # print properties at last timestep
    println(phys_props.n)
    println(phys_props.v)
    println(phys_props.T)

    # close output file
    close_netcdf(ds)
end

run(1234)

Usage notes

For now, bound checking is not turned off (via the @inbounds macro) except for the convection and particle sorting routines, so simulations may benefit from running with --check-bounds=no. Running with -O3 might also speed up things.

Testing

The tests try to cover most of the functionality implemented in the code. They can be run by invoking by calling using Pkg; Pkg.test().

Speed

Comparing to SPARTA running in serial mode computing a Couette flow with 50000 particles and 50 cells (averaging over 36k timesteps after t>14000). Julia 1.9.4, with --check-bounds=no -O3.

Merzbild.jl:

 ──────────────────────────────────────────────────────────────────────────
                                  Time                    Allocations      
                         ───────────────────────   ────────────────────────
    Tot / % measured:         27.6s /  96.2%            699MiB /   0.4%    

 Section         ncalls     time    %tot     avg     alloc    %tot      avg
 ──────────────────────────────────────────────────────────────────────────
 sort             50.0k    8.90s   33.5%   178μs     0.00B    0.0%    0.00B
 convect          50.0k    6.70s   25.2%   134μs     0.00B    0.0%    0.00B
 collide          2.50M    5.80s   21.8%  2.32μs     0.00B    0.0%    0.00B
 props compute    36.0k    5.19s   19.5%   144μs     0.00B    0.0%    0.00B
 I/O                 51   4.44ms    0.0%  87.0μs   12.0KiB    0.4%     240B
 sampling             1   2.53ms    0.0%  2.53ms   3.05MiB   99.6%  3.05MiB
 ──────────────────────────────────────────────────────────────────────────

SPARTA:

Loop time of 31.3989 on 1 procs for 50000 steps with 50000 particles

MPI task timing breakdown:
Section |  min time  |  avg time  |  max time  |%varavg| %total
---------------------------------------------------------------
Move    | 7.935      | 7.935      | 7.935      |   0.0 | 25.27
Coll    | 11.904     | 11.904     | 11.904     |   0.0 | 37.91
Sort    | 2.8201     | 2.8201     | 2.8201     |   0.0 |  8.98
Comm    | 0.0034597  | 0.0034597  | 0.0034597  |   0.0 |  0.01
Modify  | 8.7341     | 8.7341     | 8.7341     |   0.0 | 27.82
Output  | 0.00060415 | 0.00060415 | 0.00060415 |   0.0 |  0.00
Other   |            | 0.001508   |            |       |  0.00

Citing

For now, the repository can be cited as

@misc{oblapenko2024merzbild,
  title={{M}erzbild.jl: A {J}ulia {DSMC} code},
  author={Oblapenko, Georgii},
  year={2024},
  month={12},
  howpublished={\url{https://github.com/merzbild/Merzbild.jl}},
  doi={10.5281/zenodo.14503197}
}

Depending on the specific functionality used, other citations may be warranted (please look at the "Overview of capabilities" section in the documentation).

Contributing

Please see CONTRIBUTING.MD about some general guidelines on contributing to the development of Merzbild.jl

Acknowledgments

Dr. Georgii Oblapenko acknowledges the support of the German Research Foundation (DFG) via the SFB1481 research group.

About

The Merzbild Variable-Weight DSMC/FP code

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Julia 98.8%
  • Python 1.2%