Skip to content

Commit

Permalink
requirements and ge module
Browse files Browse the repository at this point in the history
  • Loading branch information
paulorvdc committed May 31, 2022
1 parent b26148b commit 6d6fa18
Show file tree
Hide file tree
Showing 36 changed files with 47,326 additions and 0 deletions.
21 changes: 21 additions & 0 deletions GraphEmbeddings/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2019 Weichen Shen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
107 changes: 107 additions & 0 deletions GraphEmbeddings/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
# GraphEmbedding

# Method


| Model | Paper | Note |
| :-------: | :------------------------------------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------------------------ |
| DeepWalk | [KDD 2014][DeepWalk: Online Learning of Social Representations](http://www.perozzi.net/publications/14_kdd_deepwalk.pdf) | [【Graph Embedding】DeepWalk:算法原理,实现和应用](https://zhuanlan.zhihu.com/p/56380812) |
| LINE | [WWW 2015][LINE: Large-scale Information Network Embedding](https://arxiv.org/pdf/1503.03578.pdf) | [【Graph Embedding】LINE:算法原理,实现和应用](https://zhuanlan.zhihu.com/p/56478167) |
| Node2Vec | [KDD 2016][node2vec: Scalable Feature Learning for Networks](https://www.kdd.org/kdd2016/papers/files/rfp0218-groverA.pdf) | [【Graph Embedding】Node2Vec:算法原理,实现和应用](https://zhuanlan.zhihu.com/p/56542707) |
| SDNE | [KDD 2016][Structural Deep Network Embedding](https://www.kdd.org/kdd2016/papers/files/rfp0191-wangAemb.pdf) | [【Graph Embedding】SDNE:算法原理,实现和应用](https://zhuanlan.zhihu.com/p/56637181) |
| Struc2Vec | [KDD 2017][struc2vec: Learning Node Representations from Structural Identity](https://arxiv.org/pdf/1704.03165.pdf) | [【Graph Embedding】Struc2Vec:算法原理,实现和应用](https://zhuanlan.zhihu.com/p/56733145) |


# How to run examples
1. clone the repo and make sure you have installed `tensorflow` or `tensorflow-gpu` on your local machine.
2. run following commands
```bash
python setup.py install
cd examples
python deepwalk_wiki.py
```

## DisscussionGroup & Related Projects

<html>
<table style="margin-left: 20px; margin-right: auto;">
<tr>
<td>
公众号:<b>浅梦的学习笔记</b><br><br>
<a href="https://github.com/shenweichen/GraphEmbedding">
<img align="center" src="./pics/code.png" />
</a>
</td>
<td>
微信:<b>deepctrbot</b><br><br>
<a href="https://github.com/shenweichen/GraphEmbedding">
<img align="center" src="./pics/deepctrbot.png" />
</a>
</td>
<td>
<ul>
<li><a href="https://github.com/shenweichen/AlgoNotes">AlgoNotes</a></li>
<li><a href="https://github.com/shenweichen/DeepCTR">DeepCTR</a></li>
<li><a href="https://github.com/shenweichen/DeepMatch">DeepMatch</a></li>
<li><a href="https://github.com/shenweichen/DeepCTR-Torch">DeepCTR-Torch</a></li>
</ul>
</td>
</tr>
</table>
</html>

# Usage
The design and implementation follows simple principles(**graph in,embedding out**) as much as possible.
## Input format
we use `networkx`to create graphs.The input of networkx graph is as follows:
`node1 node2 <edge_weight>`

![](./pics/edge_list.png)
## DeepWalk

```python
G = nx.read_edgelist('../data/wiki/Wiki_edgelist.txt',create_using=nx.DiGraph(),nodetype=None,data=[('weight',int)])# Read graph

model = DeepWalk(G,walk_length=10,num_walks=80,workers=1)#init model
model.train(window_size=5,iter=3)# train model
embeddings = model.get_embeddings()# get embedding vectors
```

## LINE

```python
G = nx.read_edgelist('../data/wiki/Wiki_edgelist.txt',create_using=nx.DiGraph(),nodetype=None,data=[('weight',int)])#read graph

model = LINE(G,embedding_size=128,order='second') #init model,order can be ['first','second','all']
model.train(batch_size=1024,epochs=50,verbose=2)# train model
embeddings = model.get_embeddings()# get embedding vectors
```
## Node2Vec
```python
G=nx.read_edgelist('../data/wiki/Wiki_edgelist.txt',
create_using = nx.DiGraph(), nodetype = None, data = [('weight', int)])#read graph

model = Node2Vec(G, walk_length = 10, num_walks = 80,p = 0.25, q = 4, workers = 1)#init model
model.train(window_size = 5, iter = 3)# train model
embeddings = model.get_embeddings()# get embedding vectors
```
## SDNE

```python
G = nx.read_edgelist('../data/wiki/Wiki_edgelist.txt',create_using=nx.DiGraph(),nodetype=None,data=[('weight',int)])#read graph

model = SDNE(G,hidden_size=[256,128]) #init model
model.train(batch_size=3000,epochs=40,verbose=2)# train model
embeddings = model.get_embeddings()# get embedding vectors
```

## Struc2Vec


```python
G = nx.read_edgelist('../data/flight/brazil-airports.edgelist',create_using=nx.DiGraph(),nodetype=None,data=[('weight',int)])#read graph

model = model = Struc2Vec(G, 10, 80, workers=4, verbose=40, ) #init model
model.train(window_size = 5, iter = 3)# train model
embeddings = model.get_embeddings()# get embedding vectors
```
Loading

0 comments on commit 6d6fa18

Please sign in to comment.