Skip to content

Abbyfade/DSN_Expresso_Churn_Hackathon

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 

Repository files navigation

DSN_Expresso_Churn

This repository contains the 4th position solution for the Pre-Bootcamp hackathon organised by Data Science Nigeria (DSN) on Zindi, from 8 August—22 August, 2020. (link to hackathon: https://zindi.africa/hackathons/dsn-pre-bootcamp-hackathon-expresso-churn-prediction-challenge).

Aim:

To help Expresso to better serve their customers by understanding which customers are at risk of leaving.

Objective:

To develop a predictive model that determines the likelihood for a customer to churn - to stop purchasing airtime and data from Expresso

Packages

Scikit learn Pandas Numpy Matplotlib Catboost Lightgbm Seaborn

Evaluation:

Logloss

Private LB score:

0.246701956963814

Models

The solution was built on two models - Catboost and lightgbm, and a weighted average of them, with the averaged model achieving a good performance on the private leaderboard.

About

Data science Nigeria Hackathons

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%