Skip to content

Tensorflow implementation of Generative Adversarial Networks (GAN) and Deep Convolutional Generative Adversarial Netwokrs for MNIST dataset.

Notifications You must be signed in to change notification settings

Abdullahshah/tensorflow-MNIST-GAN-DCGAN

 
 

Repository files navigation

tensorflow-MNIST-GAN-DCGAN

Tensorflow implementation of Generative Adversarial Networks (GAN) [1] and Deep Convolutional Generative Adversarial Networks (DCGAN) [2] for MNIST [3] dataset.

Implementation details

  • GAN

GAN

  • DCGAN

Loss

Resutls

  • Generate using fixed noise (fixed_z_)
GAN DCGAN
  • MNIST vs Generated images
MNIST GAN after 100 epochs DCGAN agter 20 epochs
  • Training loss
    • GAN

Loss

  • Learning time
    • MNIST GAN - Avg. per epoch: 4.97 sec; Total 100 epochs: 1255.92 sec
    • MNIST DCGAN - Avg. per epoch: 175.84 sec; Total 20 epochs: 3619.97 sec

Development Environment

  • Windows 7
  • GTX1080 ti
  • cuda 8.0
  • Python 3.5.3
  • tensorflow-gpu 1.2.1
  • numpy 1.13.1
  • matplotlib 2.0.2
  • imageio 2.2.0

Reference

[1] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

(Full paper: http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf)

[2] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).

(Full paper: https://arxiv.org/pdf/1511.06434.pdf)

[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.

About

Tensorflow implementation of Generative Adversarial Networks (GAN) and Deep Convolutional Generative Adversarial Netwokrs for MNIST dataset.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%