python split_data_to_classes.py
python crop_detections.py
python model_train.py
➜ python model_predict.py -h
usage: model_predict.py [-h] -i INPUT [-r RECURSIVE] [-w WEIGHTS]
optional arguments:
-h, --help show this help message and exit
-i INPUT, --input INPUT
Path to the image file or the images directory
-r RECURSIVE, --recursive RECURSIVE
Find images recursively in the input folder
-w WEIGHTS, --weights WEIGHTS
Path to the model weights to use. If empty, will use latest.
python model_predict.py -i <path> # <path> is path to a cropped image or to a directory with cropped images
➜ python apply_predictions.py -h
usage: apply_predictions.py [-h] -p PROJECT_ID [-w WEIGHTS] [-s MIN_SCORE]
optional arguments:
-h, --help show this help message and exit
-p PROJECT_ID, --project-id PROJECT_ID
Project id number
-w WEIGHTS, --weights WEIGHTS
Path to the model weights to use. If empty, will use
latest
-s MIN_SCORE, --min-score MIN_SCORE
Minimum prediction score to accept as valid
prediction. Accept all if left empty
python apply_predictions.py -p 2