generated from arol-polito/python-project-template
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
day 6 part 1. Unique Cells: 4656. use dictionary to store obstacle. u…
…sed a simulator to get a list of path. used dictionary to detect unique cells
- Loading branch information
Showing
4 changed files
with
598 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,328 @@ | ||
""" | ||
--- Day 6: Guard Gallivant --- | ||
The Historians use their fancy device again, this time to whisk you all away to the North Pole prototype suit manufacturing lab... | ||
in the year 1518! It turns out that having direct access to history is very convenient for a group of historians. | ||
You still have to be careful of time paradoxes, and so it will be important to avoid anyone from 1518 while The Historians search for the Chief. | ||
Unfortunately, a single guard is patrolling this part of the lab. | ||
Maybe you can work out where the guard will go ahead of time so that The Historians can search safely? | ||
You start by making a map (your puzzle input) of the situation. For example: | ||
....#..... | ||
.........# | ||
.......... | ||
..#....... | ||
.......#.. | ||
.......... | ||
.#..^..... | ||
........#. | ||
#......... | ||
......#... | ||
The map shows the current position of the guard with ^ (to indicate the guard is currently facing up from the perspective of the map). | ||
Any obstructions - crates, desks, alchemical reactors, etc. - are shown as #. | ||
Lab guards in 1518 follow a very strict patrol protocol which involves repeatedly following these steps: | ||
If there is something directly in front of you, turn right 90 degrees. | ||
Otherwise, take a step forward. | ||
Following the above protocol, the guard moves up several times until she reaches an obstacle (in this case, a pile of failed suit prototypes): | ||
....#..... | ||
....^....# | ||
.......... | ||
..#....... | ||
.......#.. | ||
.......... | ||
.#........ | ||
........#. | ||
#......... | ||
......#... | ||
Because there is now an obstacle in front of the guard, she turns right before continuing straight in her new facing direction: | ||
....#..... | ||
........># | ||
.......... | ||
..#....... | ||
.......#.. | ||
.......... | ||
.#........ | ||
........#. | ||
#......... | ||
......#... | ||
Reaching another obstacle (a spool of several very long polymers), she turns right again and continues downward: | ||
....#..... | ||
.........# | ||
.......... | ||
..#....... | ||
.......#.. | ||
.......... | ||
.#......v. | ||
........#. | ||
#......... | ||
......#... | ||
This process continues for a while, but the guard eventually leaves the mapped area (after walking past a tank of universal solvent): | ||
....#..... | ||
.........# | ||
.......... | ||
..#....... | ||
.......#.. | ||
.......... | ||
.#........ | ||
........#. | ||
#......... | ||
......#v.. | ||
By predicting the guard's route, you can determine which specific positions in the lab will be in the patrol path. Including the guard's starting position, the positions visited by the guard before leaving the area are marked with an X: | ||
....#..... | ||
....XXXXX# | ||
....X...X. | ||
..#.X...X. | ||
..XXXXX#X. | ||
..X.X.X.X. | ||
.#XXXXXXX. | ||
.XXXXXXX#. | ||
#XXXXXXX.. | ||
......#X.. | ||
In this example, the guard will visit 41 distinct positions on your map. | ||
Predict the path of the guard. How many distinct positions will the guard visit before leaving the mapped area? | ||
""" | ||
|
||
|
||
|
||
import logging | ||
|
||
import itertools | ||
|
||
from typing import Dict, Tuple, List | ||
|
||
class Patrol_route: | ||
class Coordinate: | ||
n_x, n_y, s_dir = -1, -1, "?" | ||
def show_position(self) -> None: | ||
logging.info(f"X: {self.n_x} Y: {self.n_y} Direction: {self.s_dir}") | ||
def get_xy(self) -> Tuple[int,int]: | ||
return (self.n_x, self.n_y) | ||
def get_xyd(self) -> Tuple[int,int,str]: | ||
return (self.n_x, self.n_y, self.s_dir) | ||
def __str__(self): | ||
return f"X: {self.n_x} Y: {self.n_y} Direction: {self.s_dir}" | ||
|
||
def __init__(self): | ||
""" | ||
Initialize the Patrol_route class | ||
""" | ||
self.gn_width = -1 | ||
self.gn_height = -1 | ||
self.gd_obstacle = dict() | ||
self.gst_guard_position = self.Coordinate() | ||
self.gltn_patrol_path = list() | ||
|
||
def load_map_from_file(self, is_filename: str) -> bool: | ||
""" | ||
Load the coordinate of obstacles in a dictionary from a file and set guard position. | ||
Parameters: | ||
is_filename (str): The filename of the map to be loaded | ||
Returns: | ||
bool: True if fail | ||
""" | ||
try: | ||
with open(is_filename, 'r') as file: | ||
lines = file.readlines() | ||
self.gn_height = len(lines) | ||
self.gn_width = len(lines[0].strip()) | ||
|
||
for y, line in enumerate(lines): | ||
for x, char in enumerate(line.strip()): | ||
if char == '#': | ||
self.gd_obstacle[(x, y)] = True | ||
elif char == '^': | ||
self.gst_guard_position.n_x = x | ||
self.gst_guard_position.n_y = y | ||
self.gst_guard_position.s_dir = char | ||
except Exception as e: | ||
logging.error(f"Failed to load map: {e}") | ||
return True #fail | ||
self.show_map(gs_filename_output) | ||
|
||
def show_map(self, output_filename: str) -> None: | ||
""" | ||
Print the map to logging.debug and an output file. | ||
Parameters: | ||
output_filename (str): The filename of the output file to save the map. | ||
""" | ||
logging.info(f"Width: {self.gn_width} | Height: {self.gn_height} | obstacles: {len(self.gd_obstacle)}") | ||
logging.info(f"Obstacles: {self.gd_obstacle}") | ||
self.gst_guard_position.show_position() | ||
try: | ||
with open(output_filename, 'w') as file: | ||
for y in range(self.gn_height): | ||
line = "" | ||
for x in range(self.gn_width): | ||
if (x, y) in self.gd_obstacle: | ||
line += '#' | ||
elif (x, y) == (self.gst_guard_position.n_x, self.gst_guard_position.n_y): | ||
line += '^' | ||
else: | ||
line += '.' | ||
logging.debug(line) | ||
file.write(line + '\n') | ||
except Exception as e: | ||
logging.error(f"Failed to show map: {e}") | ||
|
||
def is_oob(self, ist_coordinate: Coordinate ) -> bool: | ||
""" | ||
return true if a coordinate is Out of Boundary | ||
""" | ||
if (ist_coordinate.n_x < 0): | ||
return True #OOB | ||
if (ist_coordinate.n_y < 0): | ||
return True #OOB | ||
if (ist_coordinate.n_x >= self.gn_width): | ||
return True #OOB | ||
if (ist_coordinate.n_y >= self.gn_height): | ||
return True #OOB | ||
return False | ||
|
||
def compute_position_in_front_of_the_guard( self ) -> Coordinate: | ||
""" | ||
Given a guard position XY and a guard direction ^>v< | ||
Compute the position in front of the guard, and what the right turn is | ||
""" | ||
|
||
st_coordinate = self.Coordinate() | ||
|
||
#UP | ||
if (self.gst_guard_position.s_dir == "^"): | ||
st_coordinate.n_x = self.gst_guard_position.n_x | ||
st_coordinate.n_y = self.gst_guard_position.n_y -1 | ||
st_coordinate.s_dir = ">" | ||
#RIGHT | ||
elif (self.gst_guard_position.s_dir == ">"): | ||
st_coordinate.n_x = self.gst_guard_position.n_x +1 | ||
st_coordinate.n_y = self.gst_guard_position.n_y | ||
st_coordinate.s_dir = "v" | ||
#DOWN | ||
elif (self.gst_guard_position.s_dir == "v"): | ||
st_coordinate.n_x = self.gst_guard_position.n_x | ||
st_coordinate.n_y = self.gst_guard_position.n_y +1 | ||
st_coordinate.s_dir = "<" | ||
#LEFT | ||
elif (self.gst_guard_position.s_dir == "<"): | ||
st_coordinate.n_x = self.gst_guard_position.n_x -1 | ||
st_coordinate.n_y = self.gst_guard_position.n_y | ||
st_coordinate.s_dir = "^" | ||
else: | ||
logging.error("ERROR: Invalid guard direction: {self.gst_guard_position.s_dir}") | ||
st_coordinate.show_position() | ||
return st_coordinate | ||
|
||
def simulate(self): | ||
""" | ||
Simulate the path of the guard | ||
RULE: | ||
-directions are ^>v< | ||
-guard advance 1 in the direction if there are no obstacles | ||
-guard turn 90° to the right if there are obstacles | ||
""" | ||
|
||
lst_path = [self.gst_guard_position.get_xyd()] | ||
|
||
b_continue = True | ||
while b_continue: | ||
#where is the guard looking? | ||
st_coordinate = self.compute_position_in_front_of_the_guard() | ||
#is the position OOB? | ||
if self.is_oob(st_coordinate): | ||
logging.debug("guard is OOB") | ||
#The guard left the room. End. | ||
b_continue = False | ||
#is there an obstacle in that position? | ||
elif (st_coordinate.get_xy() in self.gd_obstacle): | ||
logging.debug("guard found obstacle, turn right") | ||
#the guard turns right | ||
self.gst_guard_position.s_dir = st_coordinate.s_dir | ||
#no obstacles | ||
else: | ||
logging.debug("guard moves forward") | ||
#the gurad moves forward | ||
self.gst_guard_position.n_x = st_coordinate.n_x | ||
self.gst_guard_position.n_y = st_coordinate.n_y | ||
lst_path.append(self.gst_guard_position.get_xyd()) | ||
|
||
logging.info(f"Path length: {len(lst_path)} | Path: {lst_path}") | ||
self.gltn_patrol_path = lst_path | ||
return False #OK | ||
|
||
def count_unique_cell_visited(self) -> bool: | ||
""" | ||
Given a guard path, count the number of unique cells visited | ||
""" | ||
#create a dictionary of visited cells | ||
d_patrol_cell = dict() | ||
#for each coordinate visited by the guard | ||
for n_index, tn_xyd in enumerate(self.gltn_patrol_path): | ||
#extract XY and get rid of direction | ||
tn_xy = (tn_xyd[0],tn_xyd[1]) | ||
#if coordinate is new | ||
if (tn_xy not in d_patrol_cell): | ||
#save the index where this coordinate appeared | ||
d_patrol_cell[tn_xy] = [n_index] | ||
else: | ||
#append coordinate | ||
d_patrol_cell[tn_xy].append(n_index) | ||
|
||
n_unique_cells = len(d_patrol_cell.keys()) | ||
|
||
logging.info(f"Unique Cells: {n_unique_cells} | Cells: {d_patrol_cell}") | ||
|
||
return False #OK | ||
|
||
|
||
|
||
#-------------------------------------------------------------------------------------------------------------------------------- | ||
# MAIN | ||
#-------------------------------------------------------------------------------------------------------------------------------- | ||
|
||
# Example usage | ||
gs_filename_output = 'day06\day_6_map_output.txt' | ||
gs_filename_example = 'day06\day_6_map_example.txt' | ||
gs_filename = 'day06\day_6_map.txt' | ||
# if interpreter has the intent of executing this file | ||
if __name__ == "__main__": | ||
logging.basicConfig( | ||
filename='day06\day_6.log', | ||
# Specify the log file name | ||
level=logging.DEBUG, | ||
# Set the level of debug to show | ||
format='[%(asctime)s] %(levelname)s %(module)s:%(lineno)d > %(message)s ', | ||
filemode='w' | ||
) | ||
logging.info("Begin") | ||
|
||
cl_patrol = Patrol_route() | ||
#cl_patrol.load_map_from_file(gs_filename_example) | ||
cl_patrol.load_map_from_file(gs_filename) | ||
cl_patrol.simulate() | ||
cl_patrol.count_unique_cell_visited() | ||
#works for example | ||
#[2024-12-07 14:15:46,472] INFO day_6:292 > Unique Cells: 41 | Cells: {(4, 6): [0, 21], (4, 5): [1], (4, 4): [2, 29], (4, 3): [3], (4, 2): [4], (4, 1): [5, 6], (5, 1): [7], (6, 1): [8], (7, 1): [9], (8, 1): [10, 11], (8, 2): [12], (8, 3): [13], (8, 4): [14], (8, 5): [15], (8, 6): [16, 17], (7, 6): [18], (6, 6): [19, 34], (5, 6): [20], (3, 6): [22], (2, 6): [23, 24], (2, 5): [25], (2, 4): [26, 27], (3, 4): [28], (5, 4): [30], (6, 4): [31, 32], (6, 5): [33], (6, 7): [35, 50], (6, 8): [36, 37], (5, 8): [38], (4, 8): [39], (3, 8): [40], (2, 8): [41], (1, 8): [42, 43], (1, 7): [44, 45], (2, 7): [46], (3, 7): [47], (4, 7): [48], (5, 7): [49], (7, 7): [51, 52], (7, 8): [53], (7, 9): [54, 55]} | ||
#SUCCESS PART 1 | ||
#Unique Cells: 4656 | ||
|
||
|
Oops, something went wrong.