Skip to content
forked from luxonis/depthai

DepthAI Python API utilities, examples, and tutorials.

License

Notifications You must be signed in to change notification settings

B-AROL-O/depthai

This branch is 1 commit ahead of, 1400 commits behind luxonis/depthai:main.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

904893c · Feb 8, 2022
Jan 29, 2022
Jan 25, 2022
Feb 3, 2021
Jan 31, 2022
Jan 15, 2022
Jan 14, 2022
Jan 29, 2022
Jan 11, 2022
Sep 28, 2021
Feb 6, 2020
Oct 8, 2021
Jun 4, 2020
Aug 24, 2021
Feb 8, 2022
Sep 27, 2021
Nov 20, 2021
May 26, 2021
Dec 29, 2021
Sep 27, 2021
Jan 31, 2022
Dec 28, 2021
Dec 22, 2021
Dec 28, 2021
Jan 24, 2022

Repository files navigation

DepthAI API Demo Program

This repo contains demo application, which can load different networks, create pipelines, record video, etc.

Click on the GIF below to see a full example run

depthai demo

Documentation is available at https://docs.luxonis.com/en/latest/pages/tutorials/first_steps/.

Installation

There are two installation steps that need to be performed to make sure the demo works:

  • One-time installation that will add all necessary packages to your OS.

    $ sudo curl -fL https://docs.luxonis.com/install_dependencies.sh | bash
    

    Please follow this installation page to see instructions for other platforms

  • Python dependencies installation that makes sure your Python interpreter has all required packages installed. This script is safe to be run multiple times and should be ran after every demo update

    $ python3 install_requirements.py
    

Usage

This repository and the demo script itself can be used in various independent cases:

QT GUI usage

See instuctions here

qt demo

Command line usage

Examples

python3 depthai_demo.py -gt cv - RGB & CNN inference example

python3 depthai_demo.py -gt cv -vid <path_to_video_or_yt_link> - CNN inference on video example

python3 depthai_demo.py -gt cv -cnn person-detection-retail-0013 - Run person-detection-retail-0013 model from resources/nn directory

python3 depthai_demo.py -gt cv -cnn tiny-yolo-v3 -sh 8 - Run tiny-yolo-v3 model from resources/nn directory and compile for 8 shaves

Demo

cv demo

Full reference

$ depthai_demo.py --help
usage: depthai_demo.py [-h] [-cam {left,right,color}] [-vid VIDEO] [-dd] [-dnn] [-cnnp CNNPATH] [-cnn CNNMODEL] [-sh SHAVES] [-cnnsize CNNINPUTSIZE] [-rgbr {1080,2160,3040}] [-rgbf RGBFPS] [-dct DISPARITYCONFIDENCETHRESHOLD] [-lrct LRCTHRESHOLD] [-sig SIGMA] [-med {0,3,5,7}] [-lrc] [-ext] [-sub] [-dff]
                       [-scale SCALE [SCALE ...]] [-cm {AUTUMN,BONE,CIVIDIS,COOL,DEEPGREEN,HOT,HSV,INFERNO,JET,MAGMA,OCEAN,PARULA,PINK,PLASMA,RAINBOW,SPRING,SUMMER,TURBO,TWILIGHT,TWILIGHT_SHIFTED,VIRIDIS,WINTER}] [-maxd MAXDEPTH] [-mind MINDEPTH] [-sbb] [-sbbsf SBBSCALEFACTOR]
                       [-s {nnInput,color,left,right,depth,depthRaw,disparity,disparityColor,rectifiedLeft,rectifiedRight} [{nnInput,color,left,right,depth,depthRaw,disparity,disparityColor,rectifiedLeft,rectifiedRight} ...]] [--report {temp,cpu,memory} [{temp,cpu,memory} ...]] [--reportFile REPORTFILE]
                       [-monor {400,720,800}] [-monof MONOFPS] [-cb CALLBACK] [--openvinoVersion {2020_3,2020_4,2021_1,2021_2,2021_3,2021_4}] [--app APP] [--count COUNTLABEL] [-dev DEVICEID] [-bandw {auto,low,high}] [-gt {auto,qt,cv}] [-usbs {usb2,usb3}] [-enc ENCODE [ENCODE ...]] [-encout ENCODEOUTPUT]
                       [-xls XLINKCHUNKSIZE] [-poeq POEQUALITY] [-camo CAMERAORIENTATION [CAMERAORIENTATION ...]] [--cameraControlls] [--cameraExposure CAMERAEXPOSURE [CAMERAEXPOSURE ...]] [--cameraSensitivity CAMERASENSITIVITY [CAMERASENSITIVITY ...]]
                       [--cameraSaturation CAMERASATURATION [CAMERASATURATION ...]] [--cameraContrast CAMERACONTRAST [CAMERACONTRAST ...]] [--cameraBrightness CAMERABRIGHTNESS [CAMERABRIGHTNESS ...]] [--cameraSharpness CAMERASHARPNESS [CAMERASHARPNESS ...]] [--skipVersionCheck] [--noSupervisor] [--sync]

optional arguments:
  -h, --help            show this help message and exit
  -cam {left,right,color}, --camera {left,right,color}
                        Use one of DepthAI cameras for inference (conflicts with -vid)
  -vid VIDEO, --video VIDEO
                        Path to video file (or YouTube link) to be used for inference (conflicts with -cam)
  -dd, --disableDepth   Disable depth information
  -dnn, --disableNeuralNetwork
                        Disable neural network inference
  -cnnp CNNPATH, --cnnPath CNNPATH
                        Path to cnn model directory to be run
  -cnn CNNMODEL, --cnnModel CNNMODEL
                        Cnn model to run on DepthAI
  -sh SHAVES, --shaves SHAVES
                        Number of MyriadX SHAVEs to use for neural network blob compilation
  -cnnsize CNNINPUTSIZE, --cnnInputSize CNNINPUTSIZE
                        Neural network input dimensions, in "WxH" format, e.g. "544x320"
  -rgbr {1080,2160,3040}, --rgbResolution {1080,2160,3040}
                        RGB cam res height: (1920x)1080, (3840x)2160 or (4056x)3040. Default: 1080
  -rgbf RGBFPS, --rgbFps RGBFPS
                        RGB cam fps: max 118.0 for H:1080, max 42.0 for H:2160. Default: 30.0
  -dct DISPARITYCONFIDENCETHRESHOLD, --disparityConfidenceThreshold DISPARITYCONFIDENCETHRESHOLD
                        Disparity confidence threshold, used for depth measurement. Default: 245
  -lrct LRCTHRESHOLD, --lrcThreshold LRCTHRESHOLD
                        Left right check threshold, used for depth measurement. Default: 4
  -sig SIGMA, --sigma SIGMA
                        Sigma value for Bilateral Filter applied on depth. Default: 0
  -med {0,3,5,7}, --stereoMedianSize {0,3,5,7}
                        Disparity / depth median filter kernel size (N x N) . 0 = filtering disabled. Default: 7
  -lrc, --stereoLrCheck
                        Enable stereo 'Left-Right check' feature.
  -ext, --extendedDisparity
                        Enable stereo 'Extended Disparity' feature.
  -sub, --subpixel      Enable stereo 'Subpixel' feature.
  -dff, --disableFullFovNn
                        Disable full RGB FOV for NN, keeping the nn aspect ratio
  -scale SCALE [SCALE ...], --scale SCALE [SCALE ...]
                        Define which preview windows to scale (grow/shrink). If scale_factor is not provided, it will default to 0.5 
                        Format: preview_name or preview_name,scale_factor 
                        Example: -scale color 
                        Example: -scale color,0.7 right,2 left,2
  -cm {AUTUMN,BONE,CIVIDIS,COOL,DEEPGREEN,HOT,HSV,INFERNO,JET,MAGMA,OCEAN,PARULA,PINK,PLASMA,RAINBOW,SPRING,SUMMER,TURBO,TWILIGHT,TWILIGHT_SHIFTED,VIRIDIS,WINTER}, --colorMap {AUTUMN,BONE,CIVIDIS,COOL,DEEPGREEN,HOT,HSV,INFERNO,JET,MAGMA,OCEAN,PARULA,PINK,PLASMA,RAINBOW,SPRING,SUMMER,TURBO,TWILIGHT,TWILIGHT_SHIFTED,VIRIDIS,WINTER}
                        Change color map used to apply colors to depth/disparity frames. Default: JET
  -maxd MAXDEPTH, --maxDepth MAXDEPTH
                        Maximum depth distance for spatial coordinates in mm. Default: 10000
  -mind MINDEPTH, --minDepth MINDEPTH
                        Minimum depth distance for spatial coordinates in mm. Default: 100
  -sbb, --spatialBoundingBox
                        Display spatial bounding box (ROI) when displaying spatial information. The Z coordinate get's calculated from the ROI (average)
  -sbbsf SBBSCALEFACTOR, --sbbScaleFactor SBBSCALEFACTOR
                        Spatial bounding box scale factor. Sometimes lower scale factor can give better depth (Z) result. Default: 0.3
  -s {nnInput,color,left,right,depth,depthRaw,disparity,disparityColor,rectifiedLeft,rectifiedRight} [{nnInput,color,left,right,depth,depthRaw,disparity,disparityColor,rectifiedLeft,rectifiedRight} ...], --show {nnInput,color,left,right,depth,depthRaw,disparity,disparityColor,rectifiedLeft,rectifiedRight} [{nnInput,color,left,right,depth,depthRaw,disparity,disparityColor,rectifiedLeft,rectifiedRight} ...]
                        Choose which previews to show. Default: []
  --report {temp,cpu,memory} [{temp,cpu,memory} ...]
                        Display device utilization data
  --reportFile REPORTFILE
                        Save report data to specified target file in CSV format
  -monor {400,720,800}, --monoResolution {400,720,800}
                        Mono cam res height: (1280x)720, (1280x)800 or (640x)400. Default: 400
  -monof MONOFPS, --monoFps MONOFPS
                        Mono cam fps: max 60.0 for H:720 or H:800, max 120.0 for H:400. Default: 30.0
  -cb CALLBACK, --callback CALLBACK
                        Path to callbacks file to be used. Default: <project_root>/callbacks.py
  --openvinoVersion {2020_3,2020_4,2021_1,2021_2,2021_3,2021_4}
                        Specify which OpenVINO version to use in the pipeline
  --app APP             Specify which app to run instead of the demo
  --count COUNTLABEL    Count and display the number of specified objects on the frame. You can enter either the name of the object or its label id (number).
  -dev DEVICEID, --deviceId DEVICEID
                        DepthAI MX id of the device to connect to. Use the word 'list' to show all devices and exit.
  -bandw {auto,low,high}, --bandwidth {auto,low,high}
                        Force bandwidth mode. 
                        If set to "high", the output streams will stay uncompressed
                        If set to "low", the output streams will be MJPEG-encoded
                        If set to "auto" (default), the optimal bandwidth will be selected based on your connection type and speed
  -gt {auto,qt,cv}, --guiType {auto,qt,cv}
                        Specify GUI type of the demo. "cv" uses built-in OpenCV display methods, "qt" uses Qt to display interactive GUI. "auto" will use OpenCV for Raspberry Pi and Qt for other platforms
  -usbs {usb2,usb3}, --usbSpeed {usb2,usb3}
                        Force USB communication speed. Default: usb3
  -enc ENCODE [ENCODE ...], --encode ENCODE [ENCODE ...]
                        Define which cameras to encode (record) 
                        Format: cameraName or cameraName,encFps 
                        Example: -enc left color 
                        Example: -enc color right,10 left,10
  -encout ENCODEOUTPUT, --encodeOutput ENCODEOUTPUT
                        Path to directory where to store encoded files. Default: /Users/vandavv/dev/depthai
  -xls XLINKCHUNKSIZE, --xlinkChunkSize XLINKCHUNKSIZE
                        Specify XLink chunk size
  -poeq POEQUALITY, --poeQuality POEQUALITY
                        Specify PoE encoding video quality (1-100)
  -camo CAMERAORIENTATION [CAMERAORIENTATION ...], --cameraOrientation CAMERAORIENTATION [CAMERAORIENTATION ...]
                        Define cameras orientation (available: AUTO, NORMAL, HORIZONTAL_MIRROR, VERTICAL_FLIP, ROTATE_180_DEG) 
                        Format: camera_name,camera_orientation 
                        Example: -camo color,ROTATE_180_DEG right,ROTATE_180_DEG left,ROTATE_180_DEG
  --cameraControlls     Show camera configuration options in GUI and control them using keyboard
  --cameraExposure CAMERAEXPOSURE [CAMERAEXPOSURE ...]
                        Specify camera saturation
  --cameraSensitivity CAMERASENSITIVITY [CAMERASENSITIVITY ...]
                        Specify camera sensitivity
  --cameraSaturation CAMERASATURATION [CAMERASATURATION ...]
                        Specify image saturation
  --cameraContrast CAMERACONTRAST [CAMERACONTRAST ...]
                        Specify image contrast
  --cameraBrightness CAMERABRIGHTNESS [CAMERABRIGHTNESS ...]
                        Specify image brightness
  --cameraSharpness CAMERASHARPNESS [CAMERASHARPNESS ...]
                        Specify image sharpness
  --skipVersionCheck    Disable libraries version check
  --noSupervisor        Disable supervisor check
  --sync                Enable frame and NN synchronization. If enabled, all frames and NN results will be synced before preview (same sequence number)

Supported models

We have added support for a number of different AI models that work (decoding and visualization) out-of-the-box with the demo. You can specify which model to run with -cnn argument, as shown above. Currently supported models:

- deeplabv3p_person
- face-detection-adas-0001
- face-detection-retail-0004
- human-pose-estimation-0001
- mobilenet-ssd
- openpose2
- pedestrian-detection-adas-0002
- person-detection-retail-0013
- person-vehicle-bike-detection-crossroad-1016
- road-segmentation-adas-0001
- tiny-yolo-v3
- vehicle-detection-adas-0002
- vehicle-license-plate-detection-barrier-0106
- yolo-v3

If you would like to use a custom AI model, see documentation here.

Usage statistics

By default, the demo script will collect anonymous usage statistics during runtime. These include:

  • Device-specific information (like mxid, connected cameras, device state and connection type)
  • Environment-specific information (like OS type, python version, package versions)

We gather this data to better understand what environments are our users using, as well as assist better in support questions.

All of the data we collect is anonymous and you can disable it at any time. To do so, click on the "Misc" tab and disable sending the statistics or create a .consent file in repository root with the following content

{"statistics": false}

Reporting issues

We are actively developing the DepthAI framework, and it's crucial for us to know what kind of problems you are facing. If you run into a problem, please follow the steps below and email support@luxonis.com:

  1. Run log_system_information.sh and share the output from (log_system_information.txt).
  2. Take a photo of a device you are using (or provide us a device model)
  3. Describe the expected results;
  4. Describe the actual running results (what you see after started your script with DepthAI)
  5. How you are using the DepthAI python API (code snippet, for example)
  6. Console output

About

DepthAI Python API utilities, examples, and tutorials.

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 93.0%
  • QML 4.9%
  • Shell 0.8%
  • Inno Setup 0.8%
  • PowerShell 0.4%
  • CSS 0.1%