Skip to content

BayAreaMetro/bayarea_urbansim

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bay Area UrbanSim (BAUS) Implementation

This is the UrbanSim implementation for the Bay Area. Documentation for the UrbanSim framework is available here. All documentation for Bay Area Urbansim is at: http://bayareametro.github.io/bayarea_urbansim/main/

Installation

Bay Area UrbanSim is written in Python and runs in a command line environment. It's compatible with Mac, Windows, and Linux, and with Python 2.7 and 3.5+. Python 3 is recommended.

  1. Install the Anaconda Python distribution (not strictly required, but makes things easier and more reliable)
  2. Clone this repository
  3. Create a Python environment with the current dependencies: conda env create -f baus-env-2023.yml
  4. Activate the environment: conda activate baus-env-2023
  5. Store a run_setup.yaml file in the repository's main directory and use it to specify a run name
  6. Use run_setup.yaml to specify a path to source model inputs from (stored on MTC's servers for internal use)
  7. Use run_setup.yaml to specify a path for model outputs to write to (it's helpful if the outputs folder name matches the model run name)
  8. Run python baus.py from the main model directory (more info about the command line arguments: python baus.py --help)

Optional Slack Messenger

  • Install the Slack SDK using pip install slack_sdk
  • Set environment variable SLACK_TOKEN = token (you will need an appropriate slack token from your MTC contact)
  • Set environment variable URBANSIM_SLACK = TRUE

Optional Model Run Visualizer

  • Configure the location that BAUS will write the visualizer files to in run_setup.yaml (stored on MTC's servers for internal visualization)
  • Open the visualizer from the BAUS repository to explore the model run, and/or
  • Open the visualizer from the BAUS repository and publish it to the web (hosted on MTC's Tableau account). At this time runs can be removed from model_run_inventory.csv to select the runs to be shown on the web tool

Documentation

  • See the repository's gh-pages branch for instructions on installing the BAUS documentation packages and submitting documentation

Packages

No packages published

Languages

  • Jupyter Notebook 94.6%
  • Python 5.4%