Skip to content

BoKna031/kst

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Knowledge Space Theory

KST is an open source software library with Python implementations of basic Knowledge Space Theory algorithms.

Usage

KST requires installed Python 3.6. It is recommended to use the library in a separate virtual environment. A brief and practical introduction to virtual environments can be found on the following link. First, a virtual environment should be created.

mkvirtualenv kst

After creating a virtual environment, you should install the requirements.

pip install -r requirements.txt

After that, the library can be used.

>>> import pandas as pd
>>> import numpy as np
>>> import sys
>>> sys.path.append('learning_spaces/')
>>> from learning_spaces.kst import iita
>>> data_frame = pd.DataFrame({'a': [1, 0, 1], 'b': [0, 1, 0], 'c': [0, 1, 1]})
>>> response = iita(data_frame, v=1)
>>> print(response)
{'diff': array([ 0.18518519,  0.16666667,  0.21296296]), 'implications': [(0, 1), (0, 2), (2, 0), (2, 1)], 'error.rate': 0.5, 'selection.set.index': 1, 'v': 1}

About

Knowledge Space Theory

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%