Skip to content

Code generation from natural language with less prior and more monolingual data

License

Notifications You must be signed in to change notification settings

BorealisAI/code-gen-TAE

Repository files navigation

Code generation from natural language with less prior and more monolingual data (TAE)

Paper published in ACL 2021

install the requirments:

pip install -r requirements.txt

To train model on Django

python3 train.py --dataset_name django --save_dir CHECKPOINT_DIR --copy_bt --no_encoder_update --monolingual_ratio 1.0 --early_stopping

To evaluate the provided Django checkpoint:

python3 train.py --dataset_name django --save_dir pretrained_weights/django --copy_bt --no_encoder_update --monolingual_ratio 1.0 --early_stopping --just_evaluate --seed 2

To train model on CoNaLa

python3 train.py --dataset_name conala --save_dir CHECKPOINT_DIR --copy_bt --no_encoder_update --monolingual_ratio 0.5 --epochs 80

To evaluate the provided CoNaLa chceckpoint:

python3 train.py --dataset_name conala --save_dir pretrained_weights/conala --copy_bt --no_encoder_update --monolingual_ratio 0.5 --epochs 80 --just_evaluate --seed 4

Evaluation Results

Here are the evaluation numbers for the provided checkpoints:

Dataset Results Metric
Django 81.77 Exact Match Acc.
CoNaLa 33.41 Corpus BLEU

About

Code generation from natural language with less prior and more monolingual data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages