Skip to content

Commit

Permalink
Expose code blocks in replication and explain REPL usage (#395)
Browse files Browse the repository at this point in the history
* update replication example to show all code blocks and beef up description

* fix generated_quantities return usage

* reformat

* prune deps and add CSV

* Hide the doc generating bit and add description of usage

* moving specific Pluto instructions into faq and env details into contributing

* revert doc activate to fix CI

* Rewrite FAQ and contribution guide

* fix broken cross-ref
  • Loading branch information
SamuelBrand1 authored Jul 24, 2024
1 parent db599a2 commit b91d467
Show file tree
Hide file tree
Showing 4 changed files with 116 additions and 42 deletions.
2 changes: 1 addition & 1 deletion EpiAware/docs/Project.toml
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
[deps]
ADTypes = "47edcb42-4c32-4615-8424-f2b9edc5f35b"
AdvancedHMC = "0bf59076-c3b1-5ca4-86bd-e02cd72cde3d"
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
Changelog = "5217a498-cd5d-4ec6-b8c2-9b85a09b6e3e"
DataFramesMeta = "1313f7d8-7da2-5740-9ea0-a2ca25f37964"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
DynamicPPL = "366bfd00-2699-11ea-058f-f148b4cae6d8"
EpiAware = "b2eeebe4-5992-4301-9193-7ebc9f62c855"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Pathfinder = "b1d3bc72-d0e7-4279-b92f-7fa5d6d2d454"
Pluto = "c3e4b0f8-55cb-11ea-2926-15256bba5781"
PlutoStaticHTML = "359b1769-a58e-495b-9770-312e911026ad"
ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267"
Expand Down
42 changes: 42 additions & 0 deletions EpiAware/docs/src/developer/contributing.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,3 +39,45 @@ As is conventional for Julia packages, unit tests are located at `test/*.jl` wit
Tests that build example package docs from source and inspect the results (end to end tests) are
located in `/test/examples`. The main entry points are `test/examples/make.jl` for building and
`test/examples/test.jl` for doing some basic checks on the generated outputs.

## Pluto usage in showcase documentation

Some of the showcase examples in `EpiAware/docs/src/showcase` use [`Pluto.jl`](https://plutojl.org/) notebooks for the underlying computation. The output of the notebooks is rendered into HTML for inclusion in the documentation in two steps:
1. [`PlutoStaticHTML.jl`](https://github.com/rikhuijzer/PlutoStaticHTML.jl) converts the notebook with output into a machine-readable `.md` format.
2. [`Documenter.jl`](https://github.com/JuliaDocs/Documenter.jl) renders the `.md` file into HTML for inclusion in the documentation during the build process.

For other examples of using `Pluto` to generate documentation see the examples shown [here](https://plutostatichtml.huijzer.xyz/stable/#Documenter.jl).

### Running Pluto notebooks from `EpiAware` locally

To run the `Pluto.jl` scripts in the `EpiAware` documentation directly from the source code you can do these steps:

1. Install [`Pluto.jl`](https://plutojl.org/) locally. We recommend using the version of `Pluto` that is pinned in the `Project.toml` file defining the documentation environment.
2. Clone the `EpiAware` repository.
3. Start `Pluto.jl` either from REPL (see the `Pluto.jl` documentation) or from the command line with the shell script `EpiAware/docs/pluto-scripts.sh`.
4. From the `Pluto.jl` interface, navigate to the `Pluto.jl` script you want to run.

### Contributing to Pluto notebooks in `EpiAware` documentation

#### Modifying an existing Pluto notebook
Committing changes to the `Pluto.jl` notebooks in the `EpiAware` documentation is the same as committing changes to any other part of the repository. However, please note that we expect the following features for the environment management of the notebooks:

1. Use the environment determined by the `Project.toml` file in the `EpiAware/docs` directory. If you want extra packages, add them to this environment.
2. Use the version of `EpiAware` that is used in these notebooks to be the version of `EpiAware` on the branch being pull requested into `main`. To do this use the `Pkg.develop` function.

To do this you can use the following code snippet in the Pluto notebook:

```julia
# Determine the relative path to the `EpiAware/docs` directory
docs_dir = dirname(dirname(dirname(dirname(@__DIR__))))
# Determine the relative path to the `EpiAware` package directory
pkg_dir = dirname(docs_dir)

using Pkg: Pkg
Pkg.activate(docs_dir)
Pkg.develop(; path = pkg_dir)
Pkg.instantiate()
```

#### Adding a new Pluto notebook
Adding a new `Pluto.jl` notebook to the `EpiAware` documentation is the same as adding any other file to the repository. However, in addition to following the guidelines for modifying an [existing notebook](#modifying-an-existing-pluto-notebook), please note that the new notebook is added to the set of notebook builds using `build` in the `EpiAware/docs/make.jl` file. This will generate an `.md` of the same name as the notebook which can be rendered when `makedocs` is run. For this document to be added to the overall documentation the path to the `.md` file must be added to the `Pages` array defined in `EpiAware/docs/pages.jl`.
11 changes: 7 additions & 4 deletions EpiAware/docs/src/getting-started/faq.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,11 +6,14 @@ This page contains a list of frequently asked questions about the `EpiAware` pac
Pages = ["lib/getting-started/faq.md"]
```

## Pluto scripts
## Pluto notebooks

In some of the showcase examples in `EpiAware/docs/src/showcase` we use [`Pluto.jl`](https://plutojl.org/) notebooks for the underlying computation. As well as reading the code blocks and output of the notebooks in this documentation, you can also run these notebooks by cloning `EpiAware` and running the notebooks with `Pluto.jl` (for further details see [developer notes](@ref developer)).

It should be noted that `Pluto.jl` notebooks are reactive, meaning that they re-run downstream code after changes with downstreaming determined by a tree of dependent code blocks. This is different from the standard Julia REPL, and some other notebook formats (e.g. `.ipynb`). In `Pluto` each code block is a single lines of code or encapsulated by `let ... end` and `begin ... end`. The difference between `let ... end` blocks and `begin ... end` blocks are that the `let ... end` type of code block only adds the final output/return value of the block to scope, like an anonymous function, whereas `begin ... end` executes each line and adds defined variables to scope.

For installation instructions and more information and documentation on `Pluto.jl` see the [Pluto.jl documentation](https://plutojl.org/).

We use [`Pluto.jl`](https://plutojl.org/) scripts as part of our documentation and testing. The scripts are located in `docs/src/examples` and can be run using the `Pluto.jl` package.
We recommend using the version of `Pluto` that is pinned in the `Project.toml` file defining the documentation environment.
An entry point to running or developing this documentation is the `docs/pluto-scripts.sh` bash shell script. Run this from the root directory of this repository.

## Manipulating `EpiAware` model specifications

Expand Down
103 changes: 66 additions & 37 deletions EpiAware/docs/src/showcase/replications/mishra-2020/index.jl
Original file line number Diff line number Diff line change
@@ -1,11 +1,10 @@
### A Pluto.jl notebook ###
# v0.19.40
# v0.19.43

using Markdown
using InteractiveUtils

# ╔═╡ 34a06b3b-799b-48c5-bd08-1e57151f51ec
# hideall
let
docs_dir = dirname(dirname(dirname(dirname(@__DIR__))))
pkg_dir = dirname(docs_dir)
Expand All @@ -16,31 +15,34 @@ let
Pkg.instantiate()
end;

# ╔═╡ d63b37f0-9642-4c38-ac01-9ffe48d50441
using EpiAware

# ╔═╡ 74642759-35a5-4957-9f2b-544712866410
using Turing, DynamicPPL #Underlying Turing ecosystem packages to interact with models

# ╔═╡ 0c5f413e-d043-448d-8665-f0f6f705d70f
using Distributions, Statistics #Statistics packages

# ╔═╡ b1e2a759-a52b-4ee5-8db4-cfe848878c92
using CSV, DataFramesMeta #Data wrangling

# ╔═╡ 9eb03a0b-c6ca-4e23-8109-fb68f87d7fdf
begin #Plotting backend
using StatsPlots
using StatsPlots.PlotMeasures
end

# ╔═╡ 97b5374e-7653-4b3b-98eb-d8f73aa30580
using ReverseDiff #Automatic differentiation backend

# ╔═╡ 1642dbda-4915-4e29-beff-bca592f3ec8d
begin
using EpiAware
using Turing
using Distributions
using StatsPlots, StatsPlots.PlotMeasures
using Random
using DynamicPPL
using Statistics
using DataFramesMeta
using LinearAlgebra
using Transducers
using ReverseDiff
using DelimitedFiles
begin #Date utility and set Random seed
using Dates
using Random
Random.seed!(1)
end

# ╔═╡ a59d977c-0178-11ef-0063-83e30e0cf9f0
begin
data = readdlm("south_korea_data.csv2", ','; header = true)
dates = data[1][:, 2] .|> Date
daily_cases = data[1][:, 3] .|> Integer
end;

# ╔═╡ 8a8d5682-2f89-443b-baf0-d4d3b134d311
md"
# Getting started with `EpiAware`
Expand All @@ -52,6 +54,12 @@ It is common to conceptualise the generative process of public health data, e.g
`EpiAware` is built using the [`DynamicPPL`](https://github.com/TuringLang/DynamicPPL.jl) probabilistic programming domain-specific language, which is part of the [`Turing`](https://turinglang.org/dev/docs/using-turing/guide/) PPL. The structural concept behind `EpiAware` is that each module of an epidemiological model is a self-contained `Turing` [`Model`](https://turinglang.org/DynamicPPL.jl/stable/api/#DynamicPPL.Model-Tuple{}); that is each module is an object that can be conditioned on observable data and sampled from. A complete `EpiAware` model is the composition of these objects using the [`@submodel`](https://turinglang.org/DynamicPPL.jl/stable/api/#DynamicPPL.@submodel) macro.
"

# ╔═╡ 27d73202-a93e-4471-ab50-d59345304a0b
md"
## Dependencies for this notebook
Now we want to import these dependencies into scope. If evaluating these code lines/blocks in REPL, then the REPL will offer to install any missing dependencies. Alternatively, you can add them to your active environment using `Pkg.add`.
"

# ╔═╡ 9161ab72-5c39-4a67-9762-e19f1c54c7fd
md"
## Example: Early COVID-19 case data in South Korea
Expand All @@ -76,6 +84,18 @@ C_t \sim \text{NegBin}(\text{mean} = I_t,~ \text{overdispersion} = \phi).
In the examples below we are going to largely recreate the _Mishra et al_ model, whilst emphasing that each component of the overall epidemiological model is, itself, a stand alone model that can be sampled from.
"

# ╔═╡ 1d3b9541-80ad-41b5-a5ed-a947f5c0731b
md"
## Load the data into scope
First, we make sure that we have the data we want to analysis in scope by downloading it.
"

# ╔═╡ 4e5e0e24-8c55-4cb4-be3a-d28198f81a69
url = "https://raw.githubusercontent.com/CDCgov/Rt-without-renewal/main/EpiAware/docs/src/showcase/replications/mishra-2020/south_korea_data.csv2"

# ╔═╡ a59d977c-0178-11ef-0063-83e30e0cf9f0
data = CSV.read(download(url), DataFrame)

# ╔═╡ 104f4d16-7433-4a2d-89e7-288a9b223563
md"
### Time-varying reproduction number as a `LatentModel` type
Expand Down Expand Up @@ -184,7 +204,7 @@ let
twod_ar_mdl = generate_latent(twod_ar, 30)
twod_ar_mdl_samples = mapreduce(hcat, 1:n_samples) do _
θ = rand(twod_ar_mdl) #Sample unconditionally the underlying parameters of the model
gen = generated_quantities(twod_ar_mdl, θ)[1]
gen = generated_quantities(twod_ar_mdl, θ)
end

plot(twod_ar_mdl_samples,
Expand Down Expand Up @@ -327,7 +347,7 @@ plt_obs = let
n_samples = 100
obs_mdl_samples = mapreduce(hcat, 1:n_samples) do _
θ = rand(obs_mdl) #Sample unconditionally the underlying parameters of the model
gen = generated_quantities(obs_mdl, θ)[1]
gen = generated_quantities(obs_mdl, θ)
end
scatter(obs_mdl_samples,
lab = "",
Expand Down Expand Up @@ -401,8 +421,8 @@ We supply the data as a `NamedTuple` with the `y_t` field containing the observe
"

# ╔═╡ c7140b20-e030-4dc4-97bc-0efc0ff59631
south_korea_data = (y_t = daily_cases[epi_prob.tspan[1]:epi_prob.tspan[2]],
dates = dates[epi_prob.tspan[1]:epi_prob.tspan[2]])
south_korea_data = (y_t = data.cases_new[epi_prob.tspan[1]:epi_prob.tspan[2]],
dates = data.date[epi_prob.tspan[1]:epi_prob.tspan[2]])

# ╔═╡ 9970adfd-ee88-4598-87a3-ffde5297031c
md"
Expand Down Expand Up @@ -551,44 +571,53 @@ let
end

# ╔═╡ Cell order:
# ╟─a59d977c-0178-11ef-0063-83e30e0cf9f0
# ╟─34a06b3b-799b-48c5-bd08-1e57151f51ec
# ╟─8a8d5682-2f89-443b-baf0-d4d3b134d311
# ╟─34a06b3b-799b-48c5-bd08-1e57151f51ec
# ╟─27d73202-a93e-4471-ab50-d59345304a0b
# ╠═d63b37f0-9642-4c38-ac01-9ffe48d50441
# ╠═74642759-35a5-4957-9f2b-544712866410
# ╠═0c5f413e-d043-448d-8665-f0f6f705d70f
# ╠═b1e2a759-a52b-4ee5-8db4-cfe848878c92
# ╠═9eb03a0b-c6ca-4e23-8109-fb68f87d7fdf
# ╠═97b5374e-7653-4b3b-98eb-d8f73aa30580
# ╠═1642dbda-4915-4e29-beff-bca592f3ec8d
# ╟─9161ab72-5c39-4a67-9762-e19f1c54c7fd
# ╟─1642dbda-4915-4e29-beff-bca592f3ec8d
# ╟─1d3b9541-80ad-41b5-a5ed-a947f5c0731b
# ╠═4e5e0e24-8c55-4cb4-be3a-d28198f81a69
# ╠═a59d977c-0178-11ef-0063-83e30e0cf9f0
# ╟─104f4d16-7433-4a2d-89e7-288a9b223563
# ╟─d201c82b-8efd-41e2-96d7-4f5e0c67088c
# ╠═c88bbbd6-0101-4c04-97c9-c5887ef23999
# ╟─40352cd6-3592-438b-b5d8-f56dcb1a4d27
# ╟─31ee2757-0409-45df-b193-60c552797a3d
# ╠═2bf22866-b785-4ee0-953d-ac990a197561
# ╟─25e25125-8587-4451-8600-9b55a04dbcd9
# ╟─fbe117b7-a0b8-4604-a5dd-e71a0a1a4fc3
# ╠═fbe117b7-a0b8-4604-a5dd-e71a0a1a4fc3
# ╟─9f84dec1-70f1-442e-8bef-a9494921549e
# ╠═51a82a62-2c59-43c9-8562-69d15a7edfdd
# ╟─d3938381-01b7-40c6-b369-a456ff6dba72
# ╠═d3938381-01b7-40c6-b369-a456ff6dba72
# ╟─12fd3bd5-657e-4b1a-aa88-6063419aaceb
# ╠═61eac666-9fe4-4918-bd3f-68e89275d07a
# ╟─5a96e7e9-0376-4365-8eb1-b2fad9be8fef
# ╠═5a96e7e9-0376-4365-8eb1-b2fad9be8fef
# ╟─6a9e871f-a2fa-4e41-af89-8b0b3c3b5b4b
# ╠═c1fc1929-0624-45c0-9a89-86c8479b2675
# ╠═99c9ba2c-20a5-4c7f-94d2-272d6c9d5904
# ╟─71d08f7e-c409-4fbe-b154-b21d09010683
# ╠═71d08f7e-c409-4fbe-b154-b21d09010683
# ╟─4a2b5cf1-623c-4fe7-8365-49fb7972af5a
# ╠═9e49d451-946b-430b-bcdb-1ef4bba55a4b
# ╠═8487835e-d430-4300-bd7c-e33f5769ee32
# ╟─2119319f-a2ef-4c96-82c4-3c7eaf40d2e0
# ╟─51b5d5b6-3ad3-4967-ad1d-b1caee201fcb
# ╠═9e564a6e-f521-41e8-8604-6a9d73af9ba7
# ╠═72bdb47d-4967-4f20-9ae5-01f82e7b32c5
# ╟─7a6d4b14-58d3-40c1-81f2-713c830f875f
# ╠═7a6d4b14-58d3-40c1-81f2-713c830f875f
# ╟─c8ef8a60-d087-4ae9-ae92-abeea5afc7ae
# ╠═714908a1-dc85-476f-a99f-ec5c95a78b60
# ╟─dacb8094-89a4-404a-8243-525c0dbfa482
# ╠═d45f34e2-64f0-4828-ae0d-7b4cb3a3287d
# ╠═2e0e8bf3-f34b-44bc-aa2d-046e1db6ee2d
# ╠═55c639f6-b47b-47cf-a3d6-547e793c72bc
# ╟─c3a62dda-e054-4c8c-b1b8-ba1b5c4447b3
# ╠═c3a62dda-e054-4c8c-b1b8-ba1b5c4447b3
# ╟─de5d96f0-4df6-4cc3-9f1d-156176b2b676
# ╟─a06065e1-0e20-4cf8-8d5a-2d588da20bee
# ╠═eaad5f46-e928-47c2-90ec-2cca3871c75d
Expand All @@ -600,6 +629,6 @@ end
# ╟─9970adfd-ee88-4598-87a3-ffde5297031c
# ╠═660a8511-4dd1-4788-9c14-fdd604bf83ad
# ╟─5e6f505b-49fe-4ff4-ac2e-f6adcd445569
# ╟─8b557bf1-f3dd-4f42-a250-ce965412eb32
# ╠═8b557bf1-f3dd-4f42-a250-ce965412eb32
# ╟─c05ed977-7a89-4ac8-97be-7078d69fce9f
# ╟─ff21c9ec-1581-405f-8db1-0f522b5bc296
# ╠═ff21c9ec-1581-405f-8db1-0f522b5bc296

0 comments on commit b91d467

Please sign in to comment.