Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add rand safe version of Poisson and Negative binomial distributions #418

Merged
merged 17 commits into from
Aug 15, 2024
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions EpiAware/src/EpiAwareUtils/EpiAwareUtils.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,13 +8,13 @@ using ..EpiAwareBase
using DataFramesMeta: DataFrame, @rename!
using DynamicPPL: Model, fix, condition, @submodel, @model
using MCMCChains: Chains
using Random: AbstractRNG
using Random: AbstractRNG, randexp
using Tables: rowtable

using Distributions, DocStringExtensions, QuadGK, Statistics, Turing

#Export Structures
export HalfNormal, DirectSample
export HalfNormal, DirectSample, SafePoisson, SafeNegativeBinomial

#Export functions
export scan, spread_draws, censored_pmf, get_param_array, prefix_submodel
Expand All @@ -32,5 +32,7 @@ include("turing-methods.jl")
include("DirectSample.jl")
include("post-inference.jl")
include("get_param_array.jl")
include("SafePoisson.jl")
include("SafeNegativeBinomial.jl")

end
140 changes: 140 additions & 0 deletions EpiAware/src/EpiAwareUtils/SafeNegativeBinomial.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
@doc raw"
Create a Negative binomial distribution with the specified mean that avoids `InExactError`
when the mean is too large.


# Parameterisation:
We are using a mean and cluster factorization of the negative binomial distribution such
that the variance to mean relationship is:

```math
\sigma^2 = \mu + \alpha^2 \mu^2
```

The reason for this parameterisation is that at sufficiently large mean values (i.e. `μ > 1 / α`) `α` is approximately equal to the
standard fluctuation of the distribution, e.g. if `α = 0.05` we expect typical fluctuations of samples from the negative binomial to be
about 5% of the mean when the mean is notably larger than 20. Otherwise, we expect approximately Poisson noise. In our opinion, this
parameterisation is useful for specifying the distribution in a way that is easier to reason on priors for `α`.

# Arguments:

- `μ`: The mean of the Negative binomial distribution.
- `α`: The cluster factor of the Negative binomial distribution.

# Returns:

- A `SafeNegativeBinomial` distribution with the specified mean.

# Examples:

```jldoctest SafeNegativeBinomial
using EpiAware, Distributions

bigλ = exp(48.0) #Large value of λ
α = 0.05
d = SafeNegativeBinomial(bigλ, α)
# output
EpiAware.EpiAwareUtils.SafeNegativeBinomial{Float64}(μ=7.016735912097631e20, α=0.05)
```

```jldoctest SafeNegativeBinomial
cdf(d, 2)
# output
0.0
```

```jldoctest SafeNegativeBinomial
logpdf(d, 100)
# output
-16556.546939786767
```

```jldoctest SafeNegativeBinomial
mean(d)
# output
7.016735912097631e20
```

```jldoctest SafeNegativeBinomial
var(d)
# output
1.2308645715030148e39
```
"
struct SafeNegativeBinomial{T <: Real} <: DiscreteUnivariateDistribution
μ::T
α::T

function SafeNegativeBinomial{T}(μ::T, α::T) where {T <: Real}
return new{T}(μ, α)
end
end

#Outer constructors make AD work
function SafeNegativeBinomial(μ::T, α::T) where {T <: Real}
return SafeNegativeBinomial{T}(μ, α)
end

SafeNegativeBinomial(μ::Real, α::Real) = SafeNegativeBinomial(promote(μ, α)...)

# helper function
function _negbin(d::SafeNegativeBinomial)
μ² = d.μ^2
ex_σ² = d.α^2 * μ²
seabbs marked this conversation as resolved.
Show resolved Hide resolved
p = d.μ / (d.μ + ex_σ²)
r = μ² / ex_σ²
return NegativeBinomial(r, p)
end

### Support

Base.minimum(d::SafeNegativeBinomial) = 0
Base.maximum(d::SafeNegativeBinomial) = Inf
Distributions.insupport(d::SafeNegativeBinomial, x::Integer) = x >= 0

#### Parameters

Distributions.params(d::SafeNegativeBinomial) = _negbin(d) |> params
Distributions.partype(::SafeNegativeBinomial{T}) where {T} = T

Distributions.succprob(d::SafeNegativeBinomial) = _negbin(d).p
Distributions.failprob(d::SafeNegativeBinomial{T}) where {T} = one(T) - _negbin(d).p

#### Statistics

Distributions.mean(d::SafeNegativeBinomial) = d.μ
Distributions.var(d::SafeNegativeBinomial) = d.μ + d.α^2 * d.μ^2
Distributions.std(d::SafeNegativeBinomial) = sqrt(var(d))
Distributions.skewness(d::SafeNegativeBinomial) = _negbin(d) |> skewness
Distributions.kurtosis(d::SafeNegativeBinomial) = _negbin(d) |> kurtosis
Distributions.mode(d::SafeNegativeBinomial) = _negbin(d) |> mode
function Distributions.kldivergence(p::SafeNegativeBinomial, q::SafeNegativeBinomial)
kldivergence(_negbin(p), _negbin(q))
end

#### Evaluation & Sampling

Distributions.logpdf(d::SafeNegativeBinomial, k::Real) = logpdf(_negbin(d), k)

Distributions.cdf(d::SafeNegativeBinomial, x::Real) = cdf(_negbin(d), x)
Distributions.ccdf(d::SafeNegativeBinomial, x::Real) = ccdf(_negbin(d), x)
Distributions.logcdf(d::SafeNegativeBinomial, x::Real) = logcdf(_negbin(d), x)
Distributions.logccdf(d::SafeNegativeBinomial, x::Real) = logccdf(_negbin(d), x)
Distributions.quantile(d::SafeNegativeBinomial, q::Real) = quantile(_negbin(d), q)
Distributions.cquantile(d::SafeNegativeBinomial, q::Real) = cquantile(_negbin(d), q)
Distributions.invlogcdf(d::SafeNegativeBinomial, lq::Real) = invlogcdf(_negbin(d), lq)
Distributions.invlogccdf(d::SafeNegativeBinomial, lq::Real) = invlogccdf(_negbin(d), lq)

## sampling
function Base.rand(rng::AbstractRNG, d::SafeNegativeBinomial)
_d = _negbin(d)
if isone(_d.p)
return 0
else
return rand(rng, SafePoisson(rand(rng, Gamma(_d.r, (1 - _d.p) / _d.p))))
end
end

Distributions.mgf(d::SafeNegativeBinomial, t::Real) = mgf(_negbin(d), t)
Distributions.cgf(d::SafeNegativeBinomial, t) = cgf(_negbin(d), t)
Distributions.cf(d::SafeNegativeBinomial, t::Real) = cf(_negbin(d), t)
Loading
Loading