Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Issue #498: trans_function to transform in TransformLatentModel #553

Merged
merged 1 commit into from
Dec 14, 2024

Conversation

seabbs
Copy link
Collaborator

@seabbs seabbs commented Dec 13, 2024

As the title this closes #498 by switching a struct field to match other modifier structs

Copy link
Contributor

Try this Pull Request!

Open Julia and type:

import Pkg
Pkg.activate(temp=true)
Pkg.add(url="https://github.com/CDCgov/Rt-without-renewal", rev="issue498", subdir="EpiAware")
using EpiAware

@seabbs seabbs requested a review from SamuelBrand1 December 13, 2024 12:57
@seabbs seabbs enabled auto-merge December 13, 2024 12:57
@codecov-commenter
Copy link

Codecov Report

All modified and coverable lines are covered by tests ✅

Project coverage is 91.04%. Comparing base (12a21c6) to head (6eac711).

Additional details and impacted files
@@           Coverage Diff           @@
##             main     #553   +/-   ##
=======================================
  Coverage   91.04%   91.04%           
=======================================
  Files          61       61           
  Lines         871      871           
=======================================
  Hits          793      793           
  Misses         78       78           

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

Copy link
Contributor

Benchmark result

Judge result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmarks:
    • Target: 13 Dec 2024 - 13:38
    • Baseline: 13 Dec 2024 - 14:15
  • Package commits:
    • Target: 148f06
    • Baseline: 12a21c
  • Julia commits:
    • Target: 5e9a32
    • Baseline: 5e9a32
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.06 (5%) ❌ 1.00 (1%)
["EpiLatentModels", "IID", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.90 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.93 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "MA", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 0.95 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "MA", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.08 (5%) ❌ 1.00 (1%)
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 0.94 (5%) ✅ 1.00 (1%)
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 0.94 (5%) ✅ 1.00 (1%)
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 0.94 (5%) ✅ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "IID", "evaluation"]
  • ["EpiLatentModels", "IID", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "IID", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "IID", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "MA", "evaluation"]
  • ["EpiLatentModels", "MA", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "MA", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "MA", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "RecordExpectedObs", "evaluation"]
  • ["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "TransformObservationModel", "evaluation"]
  • ["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Target

Julia Version 1.11.2
Commit 5e9a32e7af2 (2024-12-01 20:02 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      11541 s          0 s        810 s      17162 s          0 s
       #2     0 MHz       9369 s          0 s        800 s      19334 s          0 s
       #3     0 MHz      10392 s          0 s        795 s      18324 s          0 s
       #4     0 MHz       9402 s          0 s        733 s      19373 s          0 s
  Memory: 15.606487274169922 GB (12985.40234375 MB free)
  Uptime: 2957.05 sec
  Load Avg:  1.01  1.03  1.14
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.11.2
Commit 5e9a32e7af2 (2024-12-01 20:02 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      17899 s          0 s       1296 s      32406 s          0 s
       #2     0 MHz      14654 s          0 s       1206 s      35730 s          0 s
       #3     0 MHz      15738 s          0 s       1323 s      34544 s          0 s
       #4     0 MHz      13598 s          0 s       1206 s      36792 s          0 s
  Memory: 15.606487274169922 GB (12728.2890625 MB free)
  Uptime: 5169.89 sec
  Load Avg:  1.01  1.02  1.01
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 13 Dec 2024 - 13:38
  • Package commit: 148f06
  • Julia commit: 5e9a32
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 2.108 μs (5%) 416 bytes (1%) 10
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 277.112 ns (5%) 464 bytes (1%) 10
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 274.717 ns (5%) 464 bytes (1%) 10
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 406.515 ns (5%) 816 bytes (1%) 18
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 392.925 ns (5%) 816 bytes (1%) 18
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 10.209 μs (5%) 5.55 KiB (1%) 125
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.240 μs (5%) 5.55 KiB (1%) 125
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 476.454 ns (5%) 256 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 485.267 ns (5%) 256 bytes (1%) 7
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 176.675 ns (5%) 288 bytes (1%) 8
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 177.359 ns (5%) 288 bytes (1%) 8
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 261.933 ns (5%) 544 bytes (1%) 15
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 254.899 ns (5%) 544 bytes (1%) 15
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 10.119 μs (5%) 5.53 KiB (1%) 124
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.059 μs (5%) 5.53 KiB (1%) 124
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 485.267 ns (5%) 256 bytes (1%) 7
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 497.840 ns (5%) 256 bytes (1%) 7
["EpiLatentModels", "AR", "evaluation", "linked"] 13.225 μs (5%) 8.44 KiB (1%) 171
["EpiLatentModels", "AR", "evaluation", "standard"] 12.433 μs (5%) 5.77 KiB (1%) 158
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 14.948 μs (5%) 16.45 KiB (1%) 188
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 13.946 μs (5%) 13.20 KiB (1%) 171
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 140.423 μs (5%) 59.31 KiB (1%) 1296
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 96.721 μs (5%) 43.33 KiB (1%) 960
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 18.545 μs (5%) 7.81 KiB (1%) 224
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 17.202 μs (5%) 6.69 KiB (1%) 188
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.397 μs (5%) 4.36 KiB (1%) 48
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 949.158 ns (5%) 2.61 KiB (1%) 40
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.787 μs (5%) 6.42 KiB (1%) 59
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.308 μs (5%) 4.67 KiB (1%) 51
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 50.825 μs (5%) 25.59 KiB (1%) 465
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 31.950 μs (5%) 17.64 KiB (1%) 353
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.927 μs (5%) 848 bytes (1%) 24
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.707 μs (5%) 848 bytes (1%) 24
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 25.067 μs (5%) 50.69 KiB (1%) 433
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 21.621 μs (5%) 33.30 KiB (1%) 381
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 57.888 μs (5%) 115.75 KiB (1%) 905
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 48.281 μs (5%) 80.12 KiB (1%) 793
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 164.618 μs (5%) 105.61 KiB (1%) 1626
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 117.109 μs (5%) 74.91 KiB (1%) 1251
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 19.305 μs (5%) 7.92 KiB (1%) 225
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 17.703 μs (5%) 6.80 KiB (1%) 189
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 52.939 μs (5%) 41.75 KiB (1%) 576
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 50.344 μs (5%) 31.62 KiB (1%) 540
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 55.013 μs (5%) 45.27 KiB (1%) 591
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 51.246 μs (5%) 35.14 KiB (1%) 555
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 128.240 μs (5%) 67.14 KiB (1%) 1077
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 106.299 μs (5%) 52.27 KiB (1%) 938
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.266 μs (5%) 1.89 KiB (1%) 46
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.076 μs (5%) 1.89 KiB (1%) 46
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 16.651 μs (5%) 9.78 KiB (1%) 182
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 15.559 μs (5%) 6.41 KiB (1%) 170
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 18.304 μs (5%) 18.09 KiB (1%) 195
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 17.272 μs (5%) 14.72 KiB (1%) 183
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 98.434 μs (5%) 43.50 KiB (1%) 877
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 77.796 μs (5%) 35.38 KiB (1%) 762
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.630 μs (5%) 1.94 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.448 μs (5%) 1.94 KiB (1%) 45
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 554.620 ns (5%) 1.50 KiB (1%) 20
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 415.000 ns (5%) 1.19 KiB (1%) 18
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.256 μs (5%) 5.59 KiB (1%) 29
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.030 μs (5%) 5.28 KiB (1%) 27
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 36.097 μs (5%) 17.12 KiB (1%) 338
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 21.119 μs (5%) 12.06 KiB (1%) 233
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 962.273 ns (5%) 176 bytes (1%) 3
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 788.693 ns (5%) 176 bytes (1%) 3
["EpiLatentModels", "IID", "evaluation", "linked"] 198.755 ns (5%) 560 bytes (1%) 10
["EpiLatentModels", "IID", "evaluation", "standard"] 190.054 ns (5%) 560 bytes (1%) 10
["EpiLatentModels", "IID", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 516.229 ns (5%) 3.59 KiB (1%) 17
["EpiLatentModels", "IID", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 465.297 ns (5%) 3.59 KiB (1%) 17
["EpiLatentModels", "IID", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 13.546 μs (5%) 7.58 KiB (1%) 153
["EpiLatentModels", "IID", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.675 μs (5%) 7.58 KiB (1%) 153
["EpiLatentModels", "IID", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 409.565 ns (5%) 176 bytes (1%) 3
["EpiLatentModels", "IID", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 405.560 ns (5%) 176 bytes (1%) 3
["EpiLatentModels", "Intercept", "evaluation", "linked"] 205.015 ns (5%) 400 bytes (1%) 10
["EpiLatentModels", "Intercept", "evaluation", "standard"] 194.357 ns (5%) 400 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 292.847 ns (5%) 704 bytes (1%) 17
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 278.276 ns (5%) 704 bytes (1%) 17
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 5.380 μs (5%) 3.62 KiB (1%) 87
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 5.383 μs (5%) 3.62 KiB (1%) 87
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 382.922 ns (5%) 208 bytes (1%) 4
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 377.922 ns (5%) 208 bytes (1%) 4
["EpiLatentModels", "MA", "evaluation", "linked"] 1.618 μs (5%) 4.70 KiB (1%) 72
["EpiLatentModels", "MA", "evaluation", "standard"] 1.140 μs (5%) 3.25 KiB (1%) 62
["EpiLatentModels", "MA", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.854 μs (5%) 14.38 KiB (1%) 85
["EpiLatentModels", "MA", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.281 μs (5%) 12.48 KiB (1%) 73
["EpiLatentModels", "MA", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 104.996 μs (5%) 49.22 KiB (1%) 1076
["EpiLatentModels", "MA", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 65.092 μs (5%) 34.45 KiB (1%) 743
["EpiLatentModels", "MA", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 18.104 μs (5%) 7.81 KiB (1%) 224
["EpiLatentModels", "MA", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.952 μs (5%) 6.69 KiB (1%) 188
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 2.047 μs (5%) 4.05 KiB (1%) 46
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.793 μs (5%) 3.42 KiB (1%) 42
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.912 μs (5%) 8.14 KiB (1%) 55
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.558 μs (5%) 7.52 KiB (1%) 51
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 39.448 μs (5%) 19.53 KiB (1%) 363
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.856 μs (5%) 14.16 KiB (1%) 256
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 958.783 ns (5%) 176 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 782.853 ns (5%) 176 bytes (1%) 3
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 1.057 μs (5%) 3.33 KiB (1%) 35
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 728.400 ns (5%) 2.02 KiB (1%) 29
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.917 μs (5%) 9.62 KiB (1%) 46
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.538 μs (5%) 8.31 KiB (1%) 40
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 52.278 μs (5%) 26.28 KiB (1%) 480
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 34.645 μs (5%) 20.22 KiB (1%) 371
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.305 μs (5%) 1.08 KiB (1%) 24
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.122 μs (5%) 1.08 KiB (1%) 24
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 702.669 ns (5%) 1.72 KiB (1%) 26
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 523.084 ns (5%) 1.25 KiB (1%) 23
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 866.881 ns (5%) 2.25 KiB (1%) 35
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 664.148 ns (5%) 1.78 KiB (1%) 32
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 36.237 μs (5%) 16.59 KiB (1%) 344
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 20.718 μs (5%) 11.38 KiB (1%) 238
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 896.674 ns (5%) 112 bytes (1%) 3
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 715.642 ns (5%) 112 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 253.505 ns (5%) 448 bytes (1%) 12
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 239.836 ns (5%) 448 bytes (1%) 12
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 332.267 ns (5%) 768 bytes (1%) 19
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 319.234 ns (5%) 768 bytes (1%) 19
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 5.686 μs (5%) 3.93 KiB (1%) 95
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 5.615 μs (5%) 3.93 KiB (1%) 95
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 460.305 ns (5%) 160 bytes (1%) 4
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 469.143 ns (5%) 160 bytes (1%) 4
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 1.698 μs (5%) 5.36 KiB (1%) 57
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.144 μs (5%) 3.17 KiB (1%) 47
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.702 μs (5%) 11.38 KiB (1%) 68
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.109 μs (5%) 9.19 KiB (1%) 58
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 69.821 μs (5%) 35.97 KiB (1%) 690
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 50.545 μs (5%) 29.03 KiB (1%) 577
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.120 μs (5%) 1.00 KiB (1%) 24
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.632 μs (5%) 1.00 KiB (1%) 24
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 17.152 μs (5%) 10.03 KiB (1%) 193
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 16.040 μs (5%) 6.52 KiB (1%) 177
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 18.033 μs (5%) 13.23 KiB (1%) 210
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 16.582 μs (5%) 9.39 KiB (1%) 190
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 115.696 μs (5%) 47.12 KiB (1%) 934
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 76.804 μs (5%) 32.80 KiB (1%) 675
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.542 μs (5%) 1.69 KiB (1%) 48
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.939 μs (5%) 1.56 KiB (1%) 44
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.328 μs (5%) 3.58 KiB (1%) 63
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.271 μs (5%) 3.58 KiB (1%) 63
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.036 μs (5%) 3.92 KiB (1%) 72
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 3.937 μs (5%) 3.92 KiB (1%) 72
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 76.653 μs (5%) 38.77 KiB (1%) 918
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 61.836 μs (5%) 34.02 KiB (1%) 815
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.592 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.470 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 14.197 μs (5%) 22.08 KiB (1%) 412
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 14.097 μs (5%) 22.08 KiB (1%) 412
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 17.973 μs (5%) 22.30 KiB (1%) 419
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 17.683 μs (5%) 22.30 KiB (1%) 419
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 534.450 μs (5%) 293.05 KiB (1%) 7011
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 509.965 μs (5%) 288.30 KiB (1%) 6908
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 51.165 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 50.434 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.109 μs (5%) 400 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.068 μs (5%) 400 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.599 μs (5%) 624 bytes (1%) 17
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.531 μs (5%) 624 bytes (1%) 17
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 73.357 μs (5%) 35.95 KiB (1%) 903
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 58.118 μs (5%) 31.20 KiB (1%) 800
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.657 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.462 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.357 μs (5%) 1.83 KiB (1%) 30
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.035 μs (5%) 1.47 KiB (1%) 26
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.078 μs (5%) 7.78 KiB (1%) 43
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.416 μs (5%) 4.70 KiB (1%) 35
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 165.100 μs (5%) 86.44 KiB (1%) 1870
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 47.279 μs (5%) 29.38 KiB (1%) 727
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.059 μs (5%) 176 bytes (1%) 3
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.119 μs (5%) 176 bytes (1%) 3
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.630 μs (5%) 1.56 KiB (1%) 34
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.550 μs (5%) 1.56 KiB (1%) 34
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.828 μs (5%) 1.78 KiB (1%) 41
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.740 μs (5%) 1.78 KiB (1%) 41
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 26.280 μs (5%) 12.59 KiB (1%) 290
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.004 μs (5%) 7.84 KiB (1%) 187
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.096 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 954.500 ns (5%) 96 bytes (1%) 3
["EpiObsModels", "RecordExpectedObs", "evaluation", "linked"] 758.722 ns (5%) 480 bytes (1%) 14
["EpiObsModels", "RecordExpectedObs", "evaluation", "standard"] 714.239 ns (5%) 480 bytes (1%) 14
["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.022 μs (5%) 704 bytes (1%) 21
["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 979.538 ns (5%) 704 bytes (1%) 21
["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 45.495 μs (5%) 22.98 KiB (1%) 537
["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 32.310 μs (5%) 18.23 KiB (1%) 434
["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.147 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.974 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 6.671 μs (5%) 5.81 KiB (1%) 117
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 6.578 μs (5%) 5.81 KiB (1%) 117
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 7.562 μs (5%) 6.16 KiB (1%) 126
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.389 μs (5%) 6.16 KiB (1%) 126
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 88.266 μs (5%) 49.09 KiB (1%) 1044
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 71.534 μs (5%) 44.34 KiB (1%) 941
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.106 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.999 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "TransformObservationModel", "evaluation", "linked"] 1.410 μs (5%) 672 bytes (1%) 16
["EpiObsModels", "TransformObservationModel", "evaluation", "standard"] 1.361 μs (5%) 672 bytes (1%) 16
["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.837 μs (5%) 896 bytes (1%) 23
["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.793 μs (5%) 896 bytes (1%) 23
["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 71.995 μs (5%) 35.59 KiB (1%) 869
["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 58.981 μs (5%) 30.84 KiB (1%) 766
["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.592 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.465 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.239 μs (5%) 9.59 KiB (1%) 106
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 3.770 μs (5%) 8.19 KiB (1%) 97
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 6.041 μs (5%) 16.72 KiB (1%) 117
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.602 μs (5%) 15.31 KiB (1%) 108
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 97.893 μs (5%) 58.03 KiB (1%) 1121
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 80.030 μs (5%) 51.88 KiB (1%) 1009
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.268 μs (5%) 160 bytes (1%) 3
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.155 μs (5%) 160 bytes (1%) 3
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.415 μs (5%) 3.05 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 865.617 ns (5%) 1.48 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.776 μs (5%) 4.11 KiB (1%) 48
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.206 μs (5%) 2.55 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 39.063 μs (5%) 25.78 KiB (1%) 533
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.955 μs (5%) 18.80 KiB (1%) 401
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.196 μs (5%) 144 bytes (1%) 3
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.960 μs (5%) 144 bytes (1%) 3
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 407.010 ns (5%) 352 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 351.363 ns (5%) 352 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 530.363 ns (5%) 576 bytes (1%) 17
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 465.442 ns (5%) 576 bytes (1%) 17
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 33.011 μs (5%) 19.64 KiB (1%) 446
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 18.164 μs (5%) 14.22 KiB (1%) 324
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.843 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.604 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 29.856 μs (5%) 3.02 KiB (1%) 64
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 29.725 μs (5%) 2.70 KiB (1%) 62
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 21.190 μs (5%) 2.73 KiB (1%) 51
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 20.969 μs (5%) 2.42 KiB (1%) 49
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 64.571 μs (5%) 26.11 KiB (1%) 555
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 44.544 μs (5%) 20.38 KiB (1%) 431
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.166 μs (5%) 112 bytes (1%) 3
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.947 μs (5%) 112 bytes (1%) 3

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "IID", "evaluation"]
  • ["EpiLatentModels", "IID", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "IID", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "IID", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "MA", "evaluation"]
  • ["EpiLatentModels", "MA", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "MA", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "MA", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "RecordExpectedObs", "evaluation"]
  • ["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "TransformObservationModel", "evaluation"]
  • ["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.11.2
Commit 5e9a32e7af2 (2024-12-01 20:02 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      11541 s          0 s        810 s      17162 s          0 s
       #2     0 MHz       9369 s          0 s        800 s      19334 s          0 s
       #3     0 MHz      10392 s          0 s        795 s      18324 s          0 s
       #4     0 MHz       9402 s          0 s        733 s      19373 s          0 s
  Memory: 15.606487274169922 GB (12985.40234375 MB free)
  Uptime: 2957.05 sec
  Load Avg:  1.01  1.03  1.14
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/Rt-without-renewal/Rt-without-renewal

Job Properties

  • Time of benchmark: 13 Dec 2024 - 14:15
  • Package commit: 12a21c
  • Julia commit: 5e9a32
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["EpiAwareUtils", "censored_pmf"] 2.101 μs (5%) 416 bytes (1%) 10
["EpiInfModels", "DirectInfections", "evaluation", "linked"] 271.093 ns (5%) 464 bytes (1%) 10
["EpiInfModels", "DirectInfections", "evaluation", "standard"] 269.514 ns (5%) 464 bytes (1%) 10
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 397.264 ns (5%) 816 bytes (1%) 18
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 396.595 ns (5%) 816 bytes (1%) 18
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 10.299 μs (5%) 5.55 KiB (1%) 125
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 10.129 μs (5%) 5.55 KiB (1%) 125
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 501.711 ns (5%) 256 bytes (1%) 7
["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 499.851 ns (5%) 256 bytes (1%) 7
["EpiInfModels", "ExpGrowthRate", "evaluation", "linked"] 179.886 ns (5%) 288 bytes (1%) 8
["EpiInfModels", "ExpGrowthRate", "evaluation", "standard"] 170.696 ns (5%) 288 bytes (1%) 8
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 264.466 ns (5%) 544 bytes (1%) 15
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 253.155 ns (5%) 544 bytes (1%) 15
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 10.019 μs (5%) 5.53 KiB (1%) 124
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 9.969 μs (5%) 5.53 KiB (1%) 124
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 497.887 ns (5%) 256 bytes (1%) 7
["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 487.579 ns (5%) 256 bytes (1%) 7
["EpiLatentModels", "AR", "evaluation", "linked"] 13.064 μs (5%) 8.44 KiB (1%) 171
["EpiLatentModels", "AR", "evaluation", "standard"] 12.243 μs (5%) 5.77 KiB (1%) 158
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 14.918 μs (5%) 16.45 KiB (1%) 188
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 13.605 μs (5%) 13.20 KiB (1%) 171
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 137.850 μs (5%) 59.31 KiB (1%) 1296
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 96.291 μs (5%) 43.33 KiB (1%) 960
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 18.885 μs (5%) 7.81 KiB (1%) 224
["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 17.252 μs (5%) 6.69 KiB (1%) 188
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "linked"] 1.414 μs (5%) 4.36 KiB (1%) 48
["EpiLatentModels", "BroadcastLatentModel", "evaluation", "standard"] 956.800 ns (5%) 2.61 KiB (1%) 40
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.786 μs (5%) 6.42 KiB (1%) 59
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.302 μs (5%) 4.67 KiB (1%) 51
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 49.232 μs (5%) 25.59 KiB (1%) 465
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 31.690 μs (5%) 17.64 KiB (1%) 353
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.941 μs (5%) 848 bytes (1%) 24
["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.741 μs (5%) 848 bytes (1%) 24
["EpiLatentModels", "CombineLatentModels", "evaluation", "linked"] 24.967 μs (5%) 50.69 KiB (1%) 433
["EpiLatentModels", "CombineLatentModels", "evaluation", "standard"] 21.701 μs (5%) 33.30 KiB (1%) 381
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 56.195 μs (5%) 115.75 KiB (1%) 905
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 47.448 μs (5%) 80.12 KiB (1%) 793
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 165.598 μs (5%) 105.61 KiB (1%) 1626
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 117.610 μs (5%) 74.91 KiB (1%) 1251
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 19.206 μs (5%) 7.92 KiB (1%) 225
["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 17.933 μs (5%) 6.80 KiB (1%) 189
["EpiLatentModels", "ConcatLatentModels", "evaluation", "linked"] 53.390 μs (5%) 41.75 KiB (1%) 576
["EpiLatentModels", "ConcatLatentModels", "evaluation", "standard"] 50.845 μs (5%) 31.62 KiB (1%) 540
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 55.124 μs (5%) 45.27 KiB (1%) 591
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 51.568 μs (5%) 35.14 KiB (1%) 555
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 128.623 μs (5%) 67.14 KiB (1%) 1077
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 107.094 μs (5%) 52.27 KiB (1%) 938
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.297 μs (5%) 1.89 KiB (1%) 46
["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.090 μs (5%) 1.89 KiB (1%) 46
["EpiLatentModels", "DiffLatentModel", "evaluation", "linked"] 16.712 μs (5%) 9.78 KiB (1%) 182
["EpiLatentModels", "DiffLatentModel", "evaluation", "standard"] 15.419 μs (5%) 6.41 KiB (1%) 170
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 18.104 μs (5%) 18.09 KiB (1%) 195
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 17.172 μs (5%) 14.72 KiB (1%) 183
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 95.468 μs (5%) 43.50 KiB (1%) 877
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 76.904 μs (5%) 35.38 KiB (1%) 762
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.679 μs (5%) 1.94 KiB (1%) 45
["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.382 μs (5%) 1.94 KiB (1%) 45
["EpiLatentModels", "HierarchicalNormal", "evaluation", "linked"] 566.505 ns (5%) 1.50 KiB (1%) 20
["EpiLatentModels", "HierarchicalNormal", "evaluation", "standard"] 433.779 ns (5%) 1.19 KiB (1%) 18
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.180 μs (5%) 5.59 KiB (1%) 29
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.009 μs (5%) 5.28 KiB (1%) 27
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 35.947 μs (5%) 17.12 KiB (1%) 338
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 21.310 μs (5%) 12.06 KiB (1%) 233
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 971.824 ns (5%) 176 bytes (1%) 3
["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 795.076 ns (5%) 176 bytes (1%) 3
["EpiLatentModels", "IID", "evaluation", "linked"] 205.481 ns (5%) 560 bytes (1%) 10
["EpiLatentModels", "IID", "evaluation", "standard"] 195.871 ns (5%) 560 bytes (1%) 10
["EpiLatentModels", "IID", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 539.140 ns (5%) 3.59 KiB (1%) 17
["EpiLatentModels", "IID", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 516.000 ns (5%) 3.59 KiB (1%) 17
["EpiLatentModels", "IID", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 13.565 μs (5%) 7.58 KiB (1%) 153
["EpiLatentModels", "IID", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 13.545 μs (5%) 7.58 KiB (1%) 153
["EpiLatentModels", "IID", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 406.870 ns (5%) 176 bytes (1%) 3
["EpiLatentModels", "IID", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 423.251 ns (5%) 176 bytes (1%) 3
["EpiLatentModels", "Intercept", "evaluation", "linked"] 207.225 ns (5%) 400 bytes (1%) 10
["EpiLatentModels", "Intercept", "evaluation", "standard"] 194.946 ns (5%) 400 bytes (1%) 10
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 311.893 ns (5%) 704 bytes (1%) 17
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 297.628 ns (5%) 704 bytes (1%) 17
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 5.362 μs (5%) 3.62 KiB (1%) 87
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 5.342 μs (5%) 3.62 KiB (1%) 87
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 390.243 ns (5%) 208 bytes (1%) 4
["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 402.010 ns (5%) 208 bytes (1%) 4
["EpiLatentModels", "MA", "evaluation", "linked"] 1.623 μs (5%) 4.70 KiB (1%) 72
["EpiLatentModels", "MA", "evaluation", "standard"] 1.171 μs (5%) 3.25 KiB (1%) 62
["EpiLatentModels", "MA", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.005 μs (5%) 14.38 KiB (1%) 85
["EpiLatentModels", "MA", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.431 μs (5%) 12.48 KiB (1%) 73
["EpiLatentModels", "MA", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 104.617 μs (5%) 49.22 KiB (1%) 1076
["EpiLatentModels", "MA", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 65.193 μs (5%) 34.45 KiB (1%) 743
["EpiLatentModels", "MA", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 17.914 μs (5%) 7.81 KiB (1%) 224
["EpiLatentModels", "MA", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 16.651 μs (5%) 6.69 KiB (1%) 188
["EpiLatentModels", "PrefixLatentModel", "evaluation", "linked"] 2.027 μs (5%) 4.05 KiB (1%) 46
["EpiLatentModels", "PrefixLatentModel", "evaluation", "standard"] 1.762 μs (5%) 3.42 KiB (1%) 42
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.831 μs (5%) 8.14 KiB (1%) 55
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.524 μs (5%) 7.52 KiB (1%) 51
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 39.114 μs (5%) 19.53 KiB (1%) 363
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 24.236 μs (5%) 14.16 KiB (1%) 256
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 984.000 ns (5%) 176 bytes (1%) 3
["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 794.588 ns (5%) 176 bytes (1%) 3
["EpiLatentModels", "RandomWalk", "evaluation", "linked"] 1.061 μs (5%) 3.33 KiB (1%) 35
["EpiLatentModels", "RandomWalk", "evaluation", "standard"] 726.960 ns (5%) 2.02 KiB (1%) 29
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.893 μs (5%) 9.62 KiB (1%) 46
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.498 μs (5%) 8.31 KiB (1%) 40
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 51.376 μs (5%) 26.28 KiB (1%) 480
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 34.304 μs (5%) 20.22 KiB (1%) 371
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.306 μs (5%) 1.08 KiB (1%) 24
["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 3.118 μs (5%) 1.08 KiB (1%) 24
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "linked"] 721.817 ns (5%) 1.72 KiB (1%) 26
["EpiLatentModels", "RecordExpectedLatent", "evaluation", "standard"] 536.862 ns (5%) 1.25 KiB (1%) 23
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 844.567 ns (5%) 2.25 KiB (1%) 35
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 661.763 ns (5%) 1.78 KiB (1%) 32
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 35.387 μs (5%) 16.59 KiB (1%) 344
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 20.959 μs (5%) 11.38 KiB (1%) 238
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 908.103 ns (5%) 112 bytes (1%) 3
["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 720.911 ns (5%) 112 bytes (1%) 3
["EpiLatentModels", "TransformLatentModel", "evaluation", "linked"] 252.516 ns (5%) 448 bytes (1%) 12
["EpiLatentModels", "TransformLatentModel", "evaluation", "standard"] 239.237 ns (5%) 448 bytes (1%) 12
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 332.518 ns (5%) 768 bytes (1%) 19
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 320.172 ns (5%) 768 bytes (1%) 19
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 5.619 μs (5%) 3.93 KiB (1%) 95
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 5.607 μs (5%) 3.93 KiB (1%) 95
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 478.699 ns (5%) 160 bytes (1%) 4
["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 475.173 ns (5%) 160 bytes (1%) 4
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "linked"] 1.733 μs (5%) 5.36 KiB (1%) 57
["EpiLatentModels", "broadcast_dayofweek", "evaluation", "standard"] 1.204 μs (5%) 3.17 KiB (1%) 47
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 2.622 μs (5%) 11.38 KiB (1%) 68
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.019 μs (5%) 9.19 KiB (1%) 58
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 68.007 μs (5%) 35.97 KiB (1%) 690
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 49.953 μs (5%) 29.03 KiB (1%) 577
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 4.759 μs (5%) 1.00 KiB (1%) 24
["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.617 μs (5%) 1.00 KiB (1%) 24
["EpiLatentModels", "broadcast_weekly", "evaluation", "linked"] 17.212 μs (5%) 10.03 KiB (1%) 193
["EpiLatentModels", "broadcast_weekly", "evaluation", "standard"] 16.251 μs (5%) 6.52 KiB (1%) 177
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 18.104 μs (5%) 13.23 KiB (1%) 210
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 16.551 μs (5%) 9.39 KiB (1%) 190
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 117.931 μs (5%) 47.12 KiB (1%) 934
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 76.022 μs (5%) 32.80 KiB (1%) 675
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.646 μs (5%) 1.69 KiB (1%) 48
["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.043 μs (5%) 1.56 KiB (1%) 44
["EpiObsModels", "Ascertainment", "evaluation", "linked"] 3.317 μs (5%) 3.58 KiB (1%) 63
["EpiObsModels", "Ascertainment", "evaluation", "standard"] 3.255 μs (5%) 3.58 KiB (1%) 63
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 4.028 μs (5%) 3.92 KiB (1%) 72
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 3.986 μs (5%) 3.92 KiB (1%) 72
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 76.353 μs (5%) 38.77 KiB (1%) 918
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 62.286 μs (5%) 34.02 KiB (1%) 815
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.607 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.565 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "LatentDelay", "evaluation", "linked"] 14.077 μs (5%) 22.08 KiB (1%) 412
["EpiObsModels", "LatentDelay", "evaluation", "standard"] 14.016 μs (5%) 22.08 KiB (1%) 412
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 17.382 μs (5%) 22.30 KiB (1%) 419
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 17.573 μs (5%) 22.30 KiB (1%) 419
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 535.161 μs (5%) 293.05 KiB (1%) 7011
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 516.366 μs (5%) 288.30 KiB (1%) 6908
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 50.184 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 50.063 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "NegativeBinomialError", "evaluation", "linked"] 1.115 μs (5%) 400 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "evaluation", "standard"] 1.069 μs (5%) 400 bytes (1%) 10
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.553 μs (5%) 624 bytes (1%) 17
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.544 μs (5%) 624 bytes (1%) 17
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 72.145 μs (5%) 35.95 KiB (1%) 903
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 57.668 μs (5%) 31.20 KiB (1%) 800
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.599 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.787 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "PoissonError", "evaluation", "linked"] 1.339 μs (5%) 1.83 KiB (1%) 30
["EpiObsModels", "PoissonError", "evaluation", "standard"] 1.024 μs (5%) 1.47 KiB (1%) 26
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 3.043 μs (5%) 7.78 KiB (1%) 43
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 2.367 μs (5%) 4.70 KiB (1%) 35
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 164.588 μs (5%) 86.44 KiB (1%) 1870
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 46.688 μs (5%) 29.38 KiB (1%) 727
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.119 μs (5%) 176 bytes (1%) 3
["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 4.172 μs (5%) 176 bytes (1%) 3
["EpiObsModels", "PrefixObservationModel", "evaluation", "linked"] 1.639 μs (5%) 1.56 KiB (1%) 34
["EpiObsModels", "PrefixObservationModel", "evaluation", "standard"] 1.567 μs (5%) 1.56 KiB (1%) 34
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.772 μs (5%) 1.78 KiB (1%) 41
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.687 μs (5%) 1.78 KiB (1%) 41
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 26.579 μs (5%) 12.59 KiB (1%) 290
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 12.974 μs (5%) 7.84 KiB (1%) 187
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.122 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 973.000 ns (5%) 96 bytes (1%) 3
["EpiObsModels", "RecordExpectedObs", "evaluation", "linked"] 759.691 ns (5%) 480 bytes (1%) 14
["EpiObsModels", "RecordExpectedObs", "evaluation", "standard"] 712.855 ns (5%) 480 bytes (1%) 14
["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 980.167 ns (5%) 704 bytes (1%) 21
["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 979.643 ns (5%) 704 bytes (1%) 21
["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 46.126 μs (5%) 22.98 KiB (1%) 537
["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 32.751 μs (5%) 18.23 KiB (1%) 434
["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 3.103 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 2.990 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "StackObservationModels", "evaluation", "linked"] 6.628 μs (5%) 5.81 KiB (1%) 117
["EpiObsModels", "StackObservationModels", "evaluation", "standard"] 6.522 μs (5%) 5.81 KiB (1%) 117
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 7.434 μs (5%) 6.16 KiB (1%) 126
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 7.304 μs (5%) 6.16 KiB (1%) 126
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 88.545 μs (5%) 49.09 KiB (1%) 1044
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 71.273 μs (5%) 44.34 KiB (1%) 941
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 6.308 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 6.115 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "TransformObservationModel", "evaluation", "linked"] 1.400 μs (5%) 672 bytes (1%) 16
["EpiObsModels", "TransformObservationModel", "evaluation", "standard"] 1.353 μs (5%) 672 bytes (1%) 16
["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.926 μs (5%) 896 bytes (1%) 23
["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.778 μs (5%) 896 bytes (1%) 23
["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 73.056 μs (5%) 35.59 KiB (1%) 869
["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 58.890 μs (5%) 30.84 KiB (1%) 766
["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.672 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.468 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "linked"] 4.354 μs (5%) 9.59 KiB (1%) 106
["EpiObsModels", "ascertainment_dayofweek", "evaluation", "standard"] 3.836 μs (5%) 8.19 KiB (1%) 97
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 6.300 μs (5%) 16.72 KiB (1%) 117
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 5.701 μs (5%) 15.31 KiB (1%) 108
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 98.384 μs (5%) 58.03 KiB (1%) 1121
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 80.210 μs (5%) 51.88 KiB (1%) 1009
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 5.380 μs (5%) 160 bytes (1%) 3
["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 5.308 μs (5%) 160 bytes (1%) 3
["EpiObsModels", "observation_error", "missing obs", "evaluation", "linked"] 1.426 μs (5%) 3.05 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "evaluation", "standard"] 893.714 ns (5%) 1.48 KiB (1%) 28
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 1.799 μs (5%) 4.11 KiB (1%) 48
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 1.220 μs (5%) 2.55 KiB (1%) 38
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 40.315 μs (5%) 25.78 KiB (1%) 533
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 23.964 μs (5%) 18.80 KiB (1%) 401
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.216 μs (5%) 144 bytes (1%) 3
["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.993 μs (5%) 144 bytes (1%) 3
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "linked"] 407.010 ns (5%) 352 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "evaluation", "standard"] 350.657 ns (5%) 352 bytes (1%) 10
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 534.439 ns (5%) 576 bytes (1%) 17
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 462.036 ns (5%) 576 bytes (1%) 17
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 32.752 μs (5%) 19.64 KiB (1%) 446
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 18.605 μs (5%) 14.22 KiB (1%) 324
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 1.853 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.605 μs (5%) 96 bytes (1%) 3
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "linked"] 31.839 μs (5%) 3.02 KiB (1%) 64
["EpiObsModels", "observation_error", "partially missing obs", "evaluation", "standard"] 31.759 μs (5%) 2.70 KiB (1%) 62
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "linked"] 21.280 μs (5%) 2.73 KiB (1%) 51
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)", "standard"] 21.079 μs (5%) 2.42 KiB (1%) 49
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "linked"] 64.311 μs (5%) 26.11 KiB (1%) 555
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()", "standard"] 44.223 μs (5%) 20.38 KiB (1%) 431
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "linked"] 2.163 μs (5%) 112 bytes (1%) 3
["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)", "standard"] 1.960 μs (5%) 112 bytes (1%) 3

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["EpiAwareUtils"]
  • ["EpiInfModels", "DirectInfections", "evaluation"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "DirectInfections", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiInfModels", "ExpGrowthRate", "evaluation"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiInfModels", "ExpGrowthRate", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "AR", "evaluation"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "AR", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "evaluation"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "BroadcastLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "CombineLatentModels", "evaluation"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "CombineLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "ConcatLatentModels", "evaluation"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "ConcatLatentModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "DiffLatentModel", "evaluation"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "DiffLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "HierarchicalNormal", "evaluation"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "HierarchicalNormal", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "IID", "evaluation"]
  • ["EpiLatentModels", "IID", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "IID", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "IID", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "Intercept", "evaluation"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "Intercept", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "MA", "evaluation"]
  • ["EpiLatentModels", "MA", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "MA", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "MA", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "PrefixLatentModel", "evaluation"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "PrefixLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RandomWalk", "evaluation"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RandomWalk", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "evaluation"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "RecordExpectedLatent", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "TransformLatentModel", "evaluation"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "TransformLatentModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "evaluation"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiLatentModels", "broadcast_weekly", "evaluation"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiLatentModels", "broadcast_weekly", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "Ascertainment", "evaluation"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "Ascertainment", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "LatentDelay", "evaluation"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "LatentDelay", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "NegativeBinomialError", "evaluation"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "NegativeBinomialError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PoissonError", "evaluation"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PoissonError", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "PrefixObservationModel", "evaluation"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "PrefixObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "RecordExpectedObs", "evaluation"]
  • ["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "RecordExpectedObs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "StackObservationModels", "evaluation"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "StackObservationModels", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "TransformObservationModel", "evaluation"]
  • ["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "TransformObservationModel", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "evaluation"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "ascertainment_dayofweek", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "no missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "evaluation"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoForwardDiff(chunksize=0)"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff()"]
  • ["EpiObsModels", "observation_error", "partially missing obs", "gradient", "ADTypes.AutoReverseDiff(compile=true)"]

Julia versioninfo

Julia Version 1.11.2
Commit 5e9a32e7af2 (2024-12-01 20:02 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.5 LTS
  uname: Linux 6.5.0-1025-azure #26~22.04.1-Ubuntu SMP Thu Jul 11 22:33:04 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      17899 s          0 s       1296 s      32406 s          0 s
       #2     0 MHz      14654 s          0 s       1206 s      35730 s          0 s
       #3     0 MHz      15738 s          0 s       1323 s      34544 s          0 s
       #4     0 MHz      13598 s          0 s       1206 s      36792 s          0 s
  Memory: 15.606487274169922 GB (12728.2890625 MB free)
  Uptime: 5169.89 sec
  Load Avg:  1.01  1.02  1.01
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      48 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             4
On-line CPU(s) list:                0-3
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 7763 64-Core Processor
CPU family:                         25
Model:                              1
Thread(s) per core:                 2
Core(s) per socket:                 2
Socket(s):                          1
Stepping:                           1
BogoMIPS:                           4890.84
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                     AMD-V
Hypervisor vendor:                  Microsoft
Virtualization type:                full
L1d cache:                          64 KiB (2 instances)
L1i cache:                          64 KiB (2 instances)
L2 cache:                           1 MiB (2 instances)
L3 cache:                           32 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-3
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:    Vulnerable
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

@seabbs seabbs added this pull request to the merge queue Dec 14, 2024
Merged via the queue into main with commit ab73d9e Dec 14, 2024
12 checks passed
@seabbs seabbs deleted the issue498 branch December 14, 2024 06:07
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Update TransformLatentModel to have a transform argument
3 participants