Skip to content

Accompanying code to Sakarika, Kerckhof et al. 2023 - "Growth rate and limiting substrate define the nutritional composition and cell size of microbial biomass for food applications " (in prep)

License

Notifications You must be signed in to change notification settings

CMET-UGent/Sakarika-Kerckhof-et-al-2023

Repository files navigation

Sakarika-Kerckhof-et-al-2023

Accompanying code to Sakarika, Kerckhof et al. 2023 - "The nutritional composition and cell size of microbial biomass for food applications are defined by the growth conditions" (Microb Cell Fact. 2023 Dec 11;22(1):254. doi: 10.1186/s12934-023-02265-1).

Unless otherwise stated, most code is provided in the R language and most coherent scripts are grouped into R markdown files (*.Rmd), in order to allow for reproducible data science.

Folder/script structure

Script Language Purpose
Proteomics/GO_mapping_for_visualization.Rmd R (markdown) simplification of GO results into data frame for simplified visualization using the QuickGO REST API
Flow_cytometry/Gating_and_preprocessing_FCM R (markdown) data extraction and gating script from raw flow cytometry standard (FCS) files
Proteomics/Retrieve-GO-terms.ipynb Python (iPython notebook) Retrieve and organize GO id's from protein info

Dependencies and references

Source data

The mass spectrometry data and flow cytometry data have been published in dedicated repositories:

  • Proteomics data can be found at: ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD041491.
  • Flow cytometry data can be found at the FlowRepository with identifier FR-FCM-Z6Y6.

R packages

  • tidyverse: Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. doi:10.21105/joss.01686 https://doi.org/10.21105/joss.01686.

  • httr

  • xml2

  • jsonlite

  • topGO

  • openxlsx

  • flowWorkspace

  • flowCore

  • ggcyto: Van P, Jiang W, Gottardo R, Finak G (2018). “ggcyto: Next-generation open-source visualization software for cytometry.” Bioinformatics. https://doi.org/10.1093/bioinformatics/bty441.

  • Phenoflow: Props R, Monsieurs P, Mysara M, Clement L, Boon N (2016). Measuring the biodiversity of microbial communities by flow cytometry. Methods in Ecology and Evolution 7: 1376-1385. < https://doi.org/10.1111/2041-210X.12607>.

  • flowAI: Monaco G, Chen H, Poidinger M, Chen J, de Magalhaes J, Larbi A (2016). “flowAI: automatic and interactive anomaly discerning tools for flow cytometry data.” Bioinformatics, 32(16). 10.1093/bioinformatics/btw191.

Python packages

About

Accompanying code to Sakarika, Kerckhof et al. 2023 - "Growth rate and limiting substrate define the nutritional composition and cell size of microbial biomass for food applications " (in prep)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published