Skip to content

Commit

Permalink
Merge pull request #653 from CakeML/cleanup
Browse files Browse the repository at this point in the history
Move theorems to HOL
  • Loading branch information
xrchz authored May 30, 2019
2 parents 6553fc5 + a2cd3fb commit 4581b24
Show file tree
Hide file tree
Showing 2 changed files with 1 addition and 179 deletions.
2 changes: 1 addition & 1 deletion compiler/bootstrap/translation/ag32ProgScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ fun format_def def = def
wordsTheory.word_bits_mask,wordsTheory.WORD_MUL_LSL,
wordsTheory.word_mul_n2w,addressTheory.word_arith_lemma2,
wordsTheory.WORD_LT,word_msb_word_bit,ag32_constant_def,
EVAL ``dimindex (:32)``,miscTheory.word_bit_test]
EVAL ``dimindex (:32)``,wordsTheory.word_bit_test]
|> REWRITE_RULE [word_neg];

val r = translate (format_def ag32_jump_constant_def);
Expand Down
178 changes: 0 additions & 178 deletions misc/miscScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -943,13 +943,6 @@ Proof
simp[numposrepTheory.l2n_lt]
QED

Theorem word_bit_test:
word_bit n w <=> ((w && n2w (2 ** n)) <> 0w:'a word)
Proof
srw_tac [wordsLib.WORD_BIT_EQ_ss, boolSimps.CONJ_ss]
[wordsTheory.word_index, DECIDE ``0n < d ==> (n <= d - 1) = (n < d)``]
QED

val least_from_def = Define`
least_from P n = if (∃x. P x ∧ n ≤ x) then $LEAST (λx. P x ∧ n ≤ x) else $LEAST P`

Expand Down Expand Up @@ -3562,78 +3555,6 @@ Proof
\\ blastLib.BBLAST_TAC
QED

(* TODO - candidate for move to HOL *)
Theorem byte_align_aligned:
byte_aligned x ⇔ (byte_align x = x)
Proof
EVAL_TAC
QED

(* TODO - candidate for move to HOL *)
Theorem byte_aligned_add:
byte_aligned x ∧ byte_aligned y ⇒ byte_aligned (x+y)
Proof
rw[alignmentTheory.byte_aligned_def]
\\ metis_tac[alignmentTheory.aligned_add_sub_cor]
QED

(* TODO - candidate for move to HOL *)
Theorem align_ls:
align p n <=+ n
Proof
simp[WORD_LS]
\\ Cases_on`n`
\\ fs[alignmentTheory.align_w2n]
\\ qmatch_asmsub_rename_tac`n < _`
\\ DEP_REWRITE_TAC[LESS_MOD]
\\ conj_asm2_tac >- fs[]
\\ DEP_REWRITE_TAC[GSYM X_LE_DIV]
\\ simp[]
QED

(* TODO - candidate for move to HOL *)
Theorem align_lo:
¬aligned p n ⇒ align p n <+ n
Proof
simp[WORD_LO]
\\ Cases_on`n`
\\ fs[alignmentTheory.align_w2n, alignmentTheory.aligned_def]
\\ strip_tac
\\ qmatch_goalsub_abbrev_tac`a < b`
\\ `a ≤ b` suffices_by fs[]
\\ qmatch_asmsub_rename_tac`n < _`
\\ simp[Abbr`a`]
\\ DEP_REWRITE_TAC[LESS_MOD]
\\ conj_asm2_tac >- fs[]
\\ DEP_REWRITE_TAC[GSYM X_LE_DIV]
\\ simp[]
QED

Theorem aligned_between:
¬aligned p n ∧ aligned p m ∧ align p n <+ m ⇒ n <+ m
Proof
rw[WORD_LO]
\\ fs[alignmentTheory.align_w2n, alignmentTheory.aligned_def]
\\ Cases_on`n` \\ Cases_on`m` \\ fs[]
\\ CCONTR_TAC \\ fs[NOT_LESS]
\\ qmatch_asmsub_abbrev_tac`n DIV d * d`
\\ `n DIV d * d <= n` by (
DEP_REWRITE_TAC[GSYM X_LE_DIV] \\ fs[Abbr`d`] )
\\ fs[]
\\ qmatch_asmsub_rename_tac`(d * (m DIV d)) MOD _`
\\ `m DIV d * d <= m` by (
DEP_REWRITE_TAC[GSYM X_LE_DIV] \\ fs[Abbr`d`] )
\\ fs[]
\\ `d * (n DIV d) <= m` by metis_tac[]
\\ pop_assum mp_tac
\\ simp_tac pure_ss [Once MULT_COMM]
\\ DEP_REWRITE_TAC[GSYM X_LE_DIV]
\\ conj_tac >- simp[Abbr`d`]
\\ simp[NOT_LESS_EQUAL]
\\ `d * (m DIV d) < d * (n DIV d)` suffices_by fs[]
\\ metis_tac[]
QED

Theorem byte_align_IN_IMP_IN_range:
byte_align a ∈ dm ∧
(dm = { w | low <=+ w ∧ w <+ hi }) ∧
Expand All @@ -3655,57 +3576,6 @@ Proof
\\ fs[alignmentTheory.byte_align_def]
QED

local
open alignmentTheory
val aligned_add_mult_lemma = Q.prove(
`aligned k (w + n2w (2 ** k)) = aligned k w`,
fs [aligned_add_sub,aligned_pow2]) |> GEN_ALL
val aligned_add_mult_any = Q.prove(
`!n w. aligned k (w + n2w (n * 2 ** k)) = aligned k w`,
Induct \\ fs [MULT_CLAUSES,GSYM word_add_n2w] \\ rw []
\\ pop_assum (qspec_then `w + n2w (2 ** k)` mp_tac)
\\ fs [aligned_add_mult_lemma]) |> GEN_ALL
in
val aligned_add_pow = save_thm("aligned_add_pow[simp]",
CONJ aligned_add_mult_lemma aligned_add_mult_any)
end

Theorem align_add_aligned_gen:
∀a. aligned p a ⇒ (align p (a + b) = a + align p b)
Proof
completeInduct_on`w2n b`
\\ rw[]
\\ Cases_on`w2n b < 2 ** p`
>- (
simp[alignmentTheory.align_add_aligned]
\\ `align p b = 0w` by simp[lt_align_eq_0]
\\ simp[] )
\\ fs[NOT_LESS]
\\ Cases_on`w2n b = 2 ** p`
>- (
`aligned p b` by(
simp[alignmentTheory.aligned_def,alignmentTheory.align_w2n]
\\ metis_tac[n2w_w2n] )
\\ `aligned p (a + b)` by metis_tac[alignmentTheory.aligned_add_sub_cor]
\\ fs[alignmentTheory.aligned_def])
\\ fs[LESS_EQ_EXISTS]
\\ qmatch_asmsub_rename_tac`w2n b = z + _`
\\ first_x_assum(qspec_then`z`mp_tac)
\\ impl_keep_tac >- fs[]
\\ `z < dimword(:'a)` by metis_tac[w2n_lt, LESS_TRANS]
\\ disch_then(qspec_then`n2w z`mp_tac)
\\ impl_tac >- simp[]
\\ strip_tac
\\ first_assum(qspec_then`a + n2w (2 ** p)`mp_tac)
\\ impl_tac >- fs[]
\\ rewrite_tac[word_add_n2w, GSYM WORD_ADD_ASSOC]
\\ Cases_on`b` \\ fs[GSYM word_add_n2w]
\\ strip_tac
\\ first_x_assum(qspec_then`n2w (2**p)`mp_tac)
\\ impl_tac >- fs[aligned_w2n]
\\ simp[]
QED

Theorem MULT_DIV_MULT_LEMMA:
!m l k. 0 < m /\ 0 < l ==> (m * k) DIV (l * m) = k DIV l
Proof
Expand Down Expand Up @@ -3934,54 +3804,6 @@ Proof
\\ metis_tac[WORD_ADD_ASSOC,WORD_ADD_COMM]
QED

(* TODO - candidate for move to HOL *)
Theorem word_bit_thm:
!n w:'a word. word_bit n w <=> n < dimindex (:'a) /\ w ' n
Proof
fs [word_bit_def,LESS_EQ] \\ rw []
\\ assume_tac DIMINDEX_GT_0
\\ Cases_on `dimindex (:α)` \\ fs [LESS_EQ]
QED

(* TODO - candidate for move to HOL *)
Theorem word_bit_and:
word_bit n (w1 && w2) <=> word_bit n w1 /\ word_bit n w2
Proof
fs [word_bit_def,word_and_def] \\ eq_tac \\ rw []
\\ assume_tac DIMINDEX_GT_0
\\ `n < dimindex (:'a)` by decide_tac
\\ fs [fcpTheory.FCP_BETA]
QED

(* TODO - candidate for move to HOL *)
Theorem word_bit_or:
word_bit n (w1 || w2) <=> word_bit n w1 \/ word_bit n w2
Proof
fs [word_bit_def,word_or_def] \\ eq_tac \\ rw []
\\ assume_tac DIMINDEX_GT_0
\\ `n < dimindex (:'a)` by decide_tac
\\ fs [fcpTheory.FCP_BETA]
QED

(* TODO - candidate for move to HOL *)
Theorem word_bit_lsl:
word_bit n (w << i) <=>
word_bit (n - i) (w:'a word) /\ n < dimindex (:'a) /\ i <= n
Proof
fs [word_bit_thm,word_lsl_def] \\ eq_tac \\ fs []
\\ rw [] \\ rfs [fcpTheory.FCP_BETA]
QED

(* TODO - candidate for move to HOL *)
Theorem word_msb_align:
p < dimindex(:'a) ⇒ (word_msb (align p w) = word_msb (w:'a word))
Proof
rw[alignmentTheory.align_bitwise_and,word_msb]
\\ rw[word_bit_and]
\\ rw[word_bit_lsl]
\\ rw[word_bit_test, MOD_EQ_0_DIVISOR, dimword_def]
QED

(* TODO: move to sptTheory *)

val eq_shape_def = Define `
Expand Down

0 comments on commit 4581b24

Please sign in to comment.