Guanqi Zhan, Yihao Zhao, Bingchan Zhao, Haoqi Yuan, Baoquan Chen, Hao Dong, "DLGAN: Disentangling Label-Specific Fine-Grained Features for Image Manipulation"
This repository provides data and code as follows.
celebA/ # place celebA dataset here
DukeMTMC/ # place DukeMTMC dataset here
models/
prefix/ # saved models
results/
prefix/ # results at different training steps
utils.py # utilization functions
train.py # main file to train
data.py # data loader
models.py # PyTorch
config.py # training configuration
DLGAN.yaml # Conda running environment
To create conda environment and install dependencies:
conda env create -f DLGAN.yaml
Download the trained models and place them under 'models/'.
For celebA dataset, you should download and place all the images under 'celebA/img_align_celebA/', place 'list_attr_celeba.txt' file under 'celebA/'. Then, run
python train.py --dataset celebA --batch_size 32
For DukeMTMC-reID dataset, download and place all the images under 'DukeMTMC/bounding_box_train/', place 'duke_attribute.mat' file under 'DukeMTMC/'. Then, run
python train.py --dataset DukeMTMC --batch_size 32
If you find this code useful for your research, please cite our paper:
@misc{zhan2020dlgan,
title={DLGAN: Disentangling Label-Specific Fine-Grained Features for Image Manipulation},
author={Guanqi Zhan and Yihao Zhao and Bingchan Zhao and Haoqi Yuan and Baoquan Chen and Hao Dong},
year={2020},
eprint={1911.09943},
archivePrefix={arXiv},
primaryClass={cs.CV}
}