Skip to content

ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

License

Notifications You must be signed in to change notification settings

ChenyangWang95/ICON

 
 

Repository files navigation

ICON: Implicit Clothed humans Obtained from Normals

Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black

CVPR 2022

Logo


PyTorch Lightning

Paper PDF Project Page youtube views



News 🚩


Table of Contents
  1. Who needs ICON
  2. TODO
  3. Installation
  4. Dataset Preprocess
  5. Training
  6. Demo
  7. Citation
  8. Acknowledgments
  9. License
  10. Disclosure
  11. Contact


Who needs ICON?

  • Given an RGB image, you could get:
    • image (png): segmentation, normal images (body + cloth), overlap result (rgb + normal)
    • mesh (obj): SMPL-(X) body, reconstructed clothed human
    • video (mp4): self-rotated clothed human
Intermediate Results
ICON's intermediate results
Final ResultsFinal Results
ICON's normal prediction + reconstructed mesh (w/o & w/ smooth)
  • If you want to create a realistic and animatable 3D clothed avatar direclty from video / sequential images
    • fully-textured with per-vertex color
    • can be animated by SMPL pose parameters
    • natural pose-dependent clothing deformation
ICON+SCANimate+AIST++
3D Clothed Avatar, created from 400+ images using ICON+SCANimate, animated by AIST++

TODO

  • testing code and pretrained models (*self-implemented version)
    • ICON (w/ & w/o global encoder, w/ PyMAF/HybrIK/BEV/PIXIE/PARE as HPS)
    • PIFu* (RGB image + predicted normal map as input)
    • PaMIR* (RGB image + predicted normal map as input, w/ PyMAF/HybrIK/BEV/PIXIE/PARE as HPS)
  • colab notebook Google Colab
  • dataset processing
    • RGB/Normal Rendering
    • Visibility computing
  • training codes
    • ICON (w/ & w/o global encoder, w/ SMPL-X)
    • PIFu* (RGB image + predicted normal map as input)
    • PaMIR* (RGB image + predicted normal map as input, w/ voxelized SMPL)
  • evaluation on CAPE (Hard, Easy)

Installation

Please follow the Installation Instruction to setup all the required packages, extra data, and models.

Dataset Preprocess

Please follow the Data Preprocess Instruction to generate the train/val/test dataset from raw scans (THuman2.0).

Training

Please follow the Training Instruction to train your own model using THuman2.0.

Demo

cd ICON/apps

# PIFu* (*: re-implementation)
python infer.py -cfg ../configs/pifu.yaml -gpu 0 -in_dir ../examples -out_dir ../results

# PaMIR* (*: re-implementation)
python infer.py -cfg ../configs/pamir.yaml -gpu 0 -in_dir ../examples -out_dir ../results

# ICON w/ global filter (better visual details --> lower Normal Error))
python infer.py -cfg ../configs/icon-filter.yaml -gpu 0 -in_dir ../examples -out_dir ../results -hps_type {pixie/pymaf/pare/hybrik/bev}

# ICON w/o global filter (higher evaluation scores --> lower P2S/Chamfer Error))
python infer.py -cfg ../configs/icon-nofilter.yaml -gpu 0 -in_dir ../examples -out_dir ../results -hps_type {pixie/pymaf/pare/hybrik/bev}

More Qualitative Results

Comparison
Comparison with other state-of-the-art methods
extreme
Predicted normals on in-the-wild images with extreme poses


Citation

@inproceedings{xiu2022icon,
  title={{ICON}: {I}mplicit {C}lothed humans {O}btained from {N}ormals},
  author={Xiu, Yuliang and Yang, Jinlong and Tzionas, Dimitrios and Black, Michael J.},
  booktitle={IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year={2022}
}

Acknowledgments

We thank Yao Feng, Soubhik Sanyal, Qianli Ma, Xu Chen, Hongwei Yi, Chun-Hao Paul Huang, and Weiyang Liu for their feedback and discussions, Tsvetelina Alexiadis for her help with the AMT perceptual study, Taylor McConnell for her voice over, Benjamin Pellkofer for webpage, and Yuanlu Xu's help in comparing with ARCH and ARCH++.

Special thanks to Vassilis Choutas for sharing the code of bvh-distance-queries

Here are some great resources we benefit from:

Some images used in the qualitative examples come from pinterest.com.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.860768 (CLIPE Project).

License

This code and model are available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using the code and model you agree to the terms in the LICENSE.

Disclosure

MJB has received research gift funds from Adobe, Intel, Nvidia, Meta/Facebook, and Amazon. MJB has financial interests in Amazon, Datagen Technologies, and Meshcapade GmbH. While MJB was a part-time employee of Amazon during this project, his research was performed solely at, and funded solely by, the Max Planck Society.

Contact

For more questions, please contact [email protected]

For commercial licensing, please contact [email protected]

About

ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 98.4%
  • Other 1.6%