-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Experiences with Doc Retrieval and Sentence Retrieval
- Loading branch information
pedrojlazevedo
committed
Mar 26, 2020
1 parent
a5959f3
commit 78eac09
Showing
3 changed files
with
217 additions
and
25 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
import jsonlines | ||
import codecs | ||
import json | ||
from sentence_transformers import SentenceTransformer | ||
import scipy.spatial | ||
from sklearn.metrics.pairwise import cosine_similarity | ||
|
||
wiki_split_docs_dir = "data/wiki-pages-split" | ||
relevant_docs_file = "data/dev_concatenation.jsonl" | ||
relevant_sent_file = "data/dev_sentence_selection_doc.jsonl" | ||
|
||
relevant_docs_file = jsonlines.open(relevant_docs_file) | ||
|
||
|
||
# relevant_sent_file = jsonlines.open(relevant_sent_file) | ||
|
||
def get_sentence(doc, line_num): | ||
try: | ||
file = codecs.open(wiki_split_docs_dir + "/" + doc + ".json", "r", "latin-1") | ||
except: | ||
print("Failed Loading" + str(doc)) | ||
return "" | ||
|
||
file = json.load(file) | ||
full_lines = file["lines"] | ||
lines = [] | ||
for line in full_lines: | ||
lines.append(line['content']) | ||
sentence = lines[line_num] | ||
return sentence | ||
|
||
|
||
def clean_sentence(_sentence): | ||
_sentence = _sentence.replace("-LRB-", "(") | ||
_sentence = _sentence.replace("-RRB-", ")") | ||
_sentence = _sentence.replace("-LSB-", "[") | ||
_sentence = _sentence.replace("-RSB-", "]") | ||
return _sentence | ||
|
||
|
||
# model = SentenceTransformer('bert-base-nli-mean-tokens') | ||
embedder = SentenceTransformer('bert-large-nli-mean-tokens') | ||
# embedder = SentenceTransformer('bert-base-wikipedia-sections-mean-tokens') | ||
|
||
claims = [] | ||
for line in relevant_docs_file: | ||
claims.append(line) | ||
|
||
# # testing | ||
# claim_0 = claims[0] | ||
# for pair in claim_0['predicted_sentences_ner']: | ||
# print("\n") | ||
# print(pair[0]) | ||
# print(pair[1]) | ||
# print(get_sentence(pair[0], pair[1])) | ||
|
||
STOP = -1 | ||
with jsonlines.open(relevant_sent_file, mode='w') as writer_c: | ||
for claim in claims: | ||
# get all possible sentences | ||
corpus = {} | ||
sentence_identifier = {} | ||
for pair in claim['predicted_sentences_ner']: | ||
doc = pair[0] | ||
if not doc in corpus: | ||
corpus[doc] = [] | ||
sentence_identifier[doc] = [] | ||
sentence = get_sentence(doc, pair[1]) | ||
sentence = clean_sentence(sentence) | ||
title = doc.replace("_", " ") | ||
|
||
# if not title.lower() in sentence.lower(): | ||
# sentence = pair[0] + " " + sentence | ||
corpus[doc].append(sentence) | ||
sentence_identifier[doc].append((doc, pair[1])) | ||
|
||
# for pair in claim['predicted_sentences']: | ||
# sentence = get_sentence(pair[0], pair[1]) | ||
# sentence = clean_sentence(sentence) | ||
# corpus.add(sentence) | ||
# sentence_identifier.add((pair[0], pair[1])) | ||
|
||
claim['predicted_sentences_bert'] = [] | ||
|
||
# create embeddings | ||
|
||
for doc in corpus: | ||
all_sentences = list(corpus[doc]) | ||
all_sentences_identifier = list(sentence_identifier[doc]) | ||
corpus_embeddings = embedder.encode(all_sentences) | ||
query_embeddings = embedder.encode(claim['claim']) | ||
|
||
# get the n most similar sentences | ||
closest_n = 2 | ||
for query, query_embedding in zip([claim['claim']], query_embeddings): | ||
distances = scipy.spatial.distance.cdist([query_embedding], corpus_embeddings, "cosine")[0] | ||
# print(query_embedding) | ||
# print(corpus_embeddings) | ||
# print(distances) | ||
# print(scipy.spatial.distance.cdist([query_embedding], corpus_embeddings, "cosine")) | ||
results = zip(range(len(distances)), distances) | ||
results = sorted(results, key=lambda x: x[1]) | ||
|
||
print("\n\n======================\n\n") | ||
print("Query:", query) | ||
print("\nTop 5 most similar sentences in corpus:") | ||
|
||
for idx, distance in results[0:closest_n]: | ||
print(all_sentences[idx].strip(), "(Score: %.4f)" % (1 - distance)) | ||
print(all_sentences_identifier[idx]) | ||
# test_1 = query_embedding.reshape(-1, 1) | ||
# test_2 = [query_embedding] | ||
# test_3 = corpus_embeddings[idx] | ||
# test_4 = corpus_embeddings[idx].reshape(-1, 1) | ||
# print(scipy.spatial.distance.cdist([query_embedding], | ||
# [corpus_embeddings[idx]], | ||
# "cosine")[0]) | ||
# print(cosine_similarity([query_embedding], [corpus_embeddings[idx]])) | ||
|
||
claim['predicted_sentences_bert'].append(all_sentences_identifier[idx]) | ||
print(claim['predicted_sentences_bert']) | ||
writer_c.write(claim) | ||
print(STOP) | ||
if STOP == 0: | ||
break | ||
else: | ||
STOP -= 1 |