Skip to content

PyTorch implementation of 'GAN (Generative Adversarial Networks)'

Notifications You must be signed in to change notification settings

DongjunLee/gan-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generative Adversarial Nets hb-research

PyTorch implementation of Generative Adversarial Nets.

images

Requirements

Project Structure

.
├── config                  # Config files (.yml, .json) using with hb-config
├── gan                     # Generative Adversarial Networks architecture 
    ├── __init__.py             # train, evaluate, predict logic
    ├── module.py               # Discriminator, Generator module
    └── utils.py                # Save and Load Model, TensorBoard
├── data_loader.py          # make_data_loader (using DataLoader)
├── main.py                 
├── model.py                # define Model Spec
└── model.py                # utils

Reference : hb-config

Config

Can control all Experimental environment.

example: config.yml

data:
  path: "data/"

model:
  z_dim: 100     # Random noise dimension coming into generator, per output vector
  real_dim: 784

  g_h1: 256
  g_h2: 512
  g_h3: 1024

  d_h1: 1024
  d_h2: 512
  d_h3: 256

  dropout: 0.3

train:
  model_dir: "logs/gan"
  batch_size: 64
  train_steps: 50000

  d_learning_rate: 0.0002  # 2e-4
  g_learning_rate: 0.0002
  optim_betas:
    - 0.9
    - 0.999

  save_checkpoints_steps: 1000
  verbose_step_count: 100

predict:
  batch_size: 64

slack:
  webhook_url: ""  # after training notify you using slack-webhook

Usage

Install requirements.

pip install -r requirements.txt

Then, start training

python main.py --mode train

After training, generate images

python main.py --mode predict

  • generated image example

images

Experiments modes

✅ : Working
◽ : Not tested yet.

  • evaluate : Evaluate on the evaluation data.
  • train : Fit the estimator using the training data.
  • train_and_evaluate : Interleaves training and evaluation.
  • predict : Generate images.

Tensorboar

tensorboard --logdir logs

  • example

images

Reference

Author

Dongjun Lee ([email protected])

Releases

No releases published

Packages

No packages published

Languages