Skip to content

Dragon-GCS/rust-dnn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multilayer_Perceptron by Rust

用Rust实现基础的全连接神经网络,并用mnist数据集进行训练。

  • 使用数组构建二维矩阵,并重载了相关运算符,其中使用&表示矩阵乘法
  • 实现了全连接层和softmax输出层的前馈网络以及方向传播
  • 加入了Adam优化器
  • 运算效率较低,且收敛较慢,使用pytorch进行对比,编译后的文件每轮耗时大约是pytorch的5倍。其中Adam运算部分最为耗时,其次是矩阵运算部分。

pytorch

pytorch result

rust

rust result

运行方法

git clone https://github.com/Dragon-GCS/rust-dnn.git
cd rust-dnn
cargo build -r

相关公式

  • Relu: $$f(x) =\begin{cases} x & x>0 \\ 0 & x\le0\end{cases}$$

    $$f\prime(x) =\begin{cases} 1&x>0 \\ 0&x\le0\end{cases}$$

  • Sigmoid: $$\sigma(x) = \frac{1}{1+e^x}$$ $$\sigma\prime(x)=\sigma(x)(1-\sigma(x))$$

  • Softmax: $$f(x) = \frac{e^{x_i}}{\sum_{j}e^{x_j}}$$ $$f\prime(x)= f(x_i)(1 - f(x_i)) + \sum_{j\neq i} f(x_j) f(x_i) $$

  • Cross Entropy(Prime include softmax activation): $$f(\hat{y}, y) = -\frac{1}{n}\sum^n_{i=1}y_i\ln\hat{y}_i$$ $$f_i\prime(\hat{y}, y) = \hat{y_i} - y_i$$

  • Adam Optimizer: $$v_t = \frac{\beta_1*v_{t - 1} + (1 - \beta_2)*dW}{1 - \beta_1^t}$$

    $$s_t = \frac{\beta_2*s_{t - 1} + (1 - \beta_2)*dW}{1 - \beta_2^t}$$ $$W = W - \alpha * \frac{v_t}{\sqrt{s_t} + \epsilon}$$

计算优化

rust-optim

  • 函数签名使用引用传递,尽可能避免数据复制, 优化后batch时间 6ms -> 4ms
  • 数组填充元素时两种方法
    1. 使用Vec::with_capacity预先分配内存,在逐个推入元素。
    2. 使用0初始化数组,然后逐个赋值。

    两种方法在性能上没有明显差异,但在做矩阵运算时需要根据行列计算索引,有额外的计算开销

  • 使用rayon并行计算梯度,优化时间从4ms -> 1.6ms

    并行计算时需要考虑线程开销,梯度并行计算只有f64的复制损耗,计算开销大于线程开销,多线程提升明显

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages