[[https://travis-ci.org/slic3r/Slic3r][]] [[https://ci.appveyor.com/project/lordofhyphens/slic3r][https://ci.appveyor.com/api/projects/status/8iqmeat6cj158vo6?svg=true]] [[http://osx-build.slic3r.org:8080/job/Slic3r][http://osx-build.slic3r.org:8080/buildStatus/icon?job=Slic3r]]
We have automated builds for Windows (64-bit) and OSX (>= 10.7). Get a fresh build now and stay up-to-date with the development!
The MacOS X build server is kindly sponsored by:
Slic3r is mainly a toolpath generator for 3D printers: it reads 3D models (STL, OBJ, AMF, 3MF) and it converts them into G-code instructions for 3D printers. But it does much more than that, see the features list below.
Slic3r was born in 2011 within the RepRap community and thanks to its high configurability became the swiss-army knife for 3D printing. It served as a platform for experimenting several new ideas that later became technology standards, such as multiple extruders, brim, variable-height layers, per-object settings, modifiers, post-processing scripts, G-code macros and more. Despite being based on volunteer efforts, Slic3r is still pushing the boundaries of 3D printing.
Slic3r is:
- Open: it is totally open source and it’s independent from any commercial company or printer manufacturer. We want to keep 3D printing open and free.
- Compatible: it supports all the known G-code dialects (Marlin, Repetier, Mach3, LinuxCNC, Machinekit, Smoothie, Makerware, Sailfish).
- Advanced: many configuration options allow for fine-tuning and full control. While novice users often need just few options, Slic3r is mostly used by advanced users.
- Community-driven: new features or issues are discussed in the GitHub repository. Join our collaborative effort and help improve it!
- Robust: the codebase includes more than 1,000 unit and regression tests, collected in 6 years of development.
- Modular: the core of Slic3r is libslic3r, a C++ library that provides a granular API and reusable components.
- Embeddable: a complete and powerful command line interface allows to use Slic3r from the shell or to integrate it in server-side applications.
- Powerful: see the list below!
See the project homepage at slic3r.org for more information.
(Most of these are also available in the command line interface.)
- G-code generation for FFF/FDM printers;
- conversion between STL, OBJ, AMF, 3MF and POV formats;
- auto-repair of non-manifold meshes (and ability to re-export them);
- SVG export of slices;
- built-in USB/serial host controller, supporting multiple simultaneous printers each one with a spool queue;
- OctoPrint integration (send to printer);
- built-in projector and host for DLP printers;
- tool for cutting meshes in multiple solid parts with visual preview (also in batch using a grid);
- tool for extruding 2.5D TIN meshes.
The core parts of Slic3r are written in C++11, with multithreading. The graphical interface is in the process of being ported to C++14.
You can download a precompiled package from slic3r.org (releases) or from dl.slicr3r.org (automated builds).
If you want to compile the source yourself follow the instructions on one of these wiki pages: * Linux * Windows * Mac OSX
Sure! You can do the following to find things that are available to help with:
- Development
- Low Effort tasks: pick one of them!
- Help Wanted tasks: pick one of them!
- More available tasks: let’s discuss together before you start working on them
- Please comment in the related GitHub issue that you are working on it so that other people know.
- Contribute to the Manual! (see its GitHub repository)
- You can also find us in #slic3r on FreeNode: talk to Sound, LoH or the other members of the Slic3r community.
- Add an issue to the GitHub tracker if it isn’t already present.
- Drop Alessandro a line at [email protected].
- Drop Joseph a line at [email protected]
package/
: the scripts used for packaging the executablessrc/
: the C++ source of theslic3r
executable the and CMake definition file for compiling itsrc/GUI
: The C++ GUI.src/test
: New test suite for libslic3r and the GUI. Implemented with Catch2t/
: the test suite (deprecated)utils/
: various useful scriptsxs/src/libslic3r/
: C++ sources for libslic3rxs/t/
: test suite for libslic3r (deprecated)xs/xsp/
: bindings for calling libslic3r from Perl (XS) (deprecated)
The main author of Slic3r is Alessandro Ranellucci (@alexrj, Sound in IRC, [@alranel](http://twitter.com/alranel) on Twitter), who started the project in 2011.
Joseph Lenox (@lordofhyphens, LoH in IRC, [@LenoxPlay](http://twitter.com/LenoxPlay) on Twitter) is the current co-maintainer.
Contributions by Henrik Brix Andersen, Vojtech Bubnik, Nicolas Dandrimont, Mark Hindess, Petr Ledvina, Y. Sapir, Mike Sheldrake, Kliment Yanev and numerous others. Original manual by Gary Hodgson. Slic3r logo designed by Corey Daniels, Silk Icon Set designed by Mark James, stl and gcode file icons designed by Akira Yasuda.
Usage: slic3r.pl [ OPTIONS ] [ file.stl ] [ file2.stl ] ... --help Output this usage screen and exit --version Output the version of Slic3r and exit --save <file> Save configuration to the specified file --load <file> Load configuration from the specified file. It can be used more than once to load options from multiple files. -o, --output <file> File to output gcode to (by default, the file will be saved into the same directory as the input file using the --output-filename-format to generate the filename.) If a directory is specified for this option, the output will be saved under that directory, and the filename will be generated by --output-filename-format. Non-slicing actions (no G-code will be generated): --repair Repair given STL files and save them as <name>_fixed.obj --cut <z> Cut given input files at given Z (relative) and export them as <name>_upper.stl and <name>_lower.stl --split Split the shells contained in given STL file into several STL files --info Output information about the supplied file(s) and exit -j, --threads <num> Number of threads to use (1+, default: 2) GUI options: --gui Forces the GUI launch instead of command line slicing (if you supply a model file, it will be loaded into the plater) --no-gui Forces the command line slicing instead of gui. This takes precedence over --gui if both are present. --autosave <file> Automatically export current configuration to the specified file Output options: --output-filename-format Output file name format; all config options enclosed in brackets will be replaced by their values, as well as [input_filename_base] and [input_filename] (default: [input_filename_base].gcode) --post-process Generated G-code will be processed with the supplied script; call this more than once to process through multiple scripts. --export-svg Export a SVG file containing slices instead of G-code. -m, --merge If multiple files are supplied, they will be composed into a single print rather than processed individually. Printer options: --bed-shape Coordinates in mm of the bed's points (default: 0x0,200x0,200x200,0x200) --has-heatbed This will provide automatic generation of bed heating gcode --nozzle-diameter Diameter of nozzle in mm (default: 0.5) --print-center Coordinates in mm of the point to center the print around (default: 100,100) --z-offset Additional height in mm to add to vertical coordinates (+/-, default: 0) --gcode-flavor The type of G-code to generate (reprap/teacup/repetier/makerware/sailfish/mach3/machinekit/smoothie/no-extrusion, default: reprap) --use-relative-e-distances Enable this to get relative E values (default: no) --use-firmware-retraction Enable firmware-controlled retraction using G10/G11 (default: no) --use-volumetric-e Express E in cubic millimeters and prepend M200 (default: no) --gcode-arcs Use G2/G3 commands for native arcs (experimental, not supported by all firmwares) --gcode-comments Make G-code verbose by adding comments (default: no) --vibration-limit Limit the frequency of moves on X and Y axes (Hz, set zero to disable; default: 0) --pressure-advance Adjust pressure using the experimental advance algorithm (K constant, set zero to disable; default: 0) Filament options: --filament-diameter Diameter in mm of your raw filament (default: 3) --extrusion-multiplier Change this to alter the amount of plastic extruded. There should be very little need to change this value, which is only useful to compensate for filament packing (default: 1) --temperature Extrusion temperature in degree Celsius, set 0 to disable (default: 200) --first-layer-temperature Extrusion temperature for the first layer, in degree Celsius, set 0 to disable (default: same as --temperature) --bed-temperature Heated bed temperature in degree Celsius, set 0 to disable (default: 0) --first-layer-bed-temperature Heated bed temperature for the first layer, in degree Celsius, set 0 to disable (default: same as --bed-temperature) Speed options: --travel-speed Speed of non-print moves in mm/s (default: 130) --perimeter-speed Speed of print moves for perimeters in mm/s (default: 30) --small-perimeter-speed Speed of print moves for small perimeters in mm/s or % over perimeter speed (default: 30) --external-perimeter-speed Speed of print moves for the external perimeter in mm/s or % over perimeter speed (default: 70%) --infill-speed Speed of print moves in mm/s (default: 60) --solid-infill-speed Speed of print moves for solid surfaces in mm/s or % over infill speed (default: 60) --top-solid-infill-speed Speed of print moves for top surfaces in mm/s or % over solid infill speed (default: 50) --support-material-speed Speed of support material print moves in mm/s (default: 60) --support-material-interface-speed Speed of support material interface print moves in mm/s or % over support material speed (default: 100%) --bridge-speed Speed of bridge print moves in mm/s (default: 60) --gap-fill-speed Speed of gap fill print moves in mm/s (default: 20) --first-layer-speed Speed of print moves for bottom layer, expressed either as an absolute value or as a percentage over normal speeds (default: 30%) Acceleration options: --perimeter-acceleration Overrides firmware's default acceleration for perimeters. (mm/s^2, set zero to disable; default: 0) --infill-acceleration Overrides firmware's default acceleration for infill. (mm/s^2, set zero to disable; default: 0) --bridge-acceleration Overrides firmware's default acceleration for bridges. (mm/s^2, set zero to disable; default: 0) --first-layer-acceleration Overrides firmware's default acceleration for first layer. (mm/s^2, set zero to disable; default: 0) --default-acceleration Acceleration will be reset to this value after the specific settings above have been applied. (mm/s^2, set zero to disable; default: 0) Accuracy options: --layer-height Layer height in mm (default: 0.3) --first-layer-height Layer height for first layer (mm or %, default: 0.35) --infill-every-layers Infill every N layers (default: 1) --solid-infill-every-layers Force a solid layer every N layers (default: 0) Print options: --perimeters Number of perimeters/horizontal skins (range: 0+, default: 3) --top-solid-layers Number of solid layers to do for top surfaces (range: 0+, default: 3) --bottom-solid-layers Number of solid layers to do for bottom surfaces (range: 0+, default: 3) --min-shell-thickness Minimum thickness of all solid shells (range: 0+, default: 0) --solid-layers Shortcut for setting the two options above at once --fill-density Infill density (range: 0%-100%, default: 40%) --fill-angle Infill angle in degrees (range: 0-90, default: 45) --fill-pattern Pattern to use to fill non-solid layers (default: honeycomb) --solid-fill-pattern Pattern to use to fill solid layers (default: rectilinear) --start-gcode Load initial G-code from the supplied file. This will overwrite the default command (home all axes [G28]). --end-gcode Load final G-code from the supplied file. This will overwrite the default commands (turn off temperature [M104 S0], home X axis [G28 X], disable motors [M84]). --before-layer-gcode Load before-layer-change G-code from the supplied file (default: nothing). --layer-gcode Load after-layer-change G-code from the supplied file (default: nothing). --toolchange-gcode Load tool-change G-code from the supplied file (default: nothing). --seam-position Position of loop starting points (random/nearest/aligned, default: aligned). --external-perimeters-first Reverse perimeter order. (default: no) --spiral-vase Experimental option to raise Z gradually when printing single-walled vases (default: no) --only-retract-when-crossing-perimeters Disable retraction when travelling between infill paths inside the same island. (default: no) --solid-infill-below-area Force solid infill when a region has a smaller area than this threshold (mm^2, default: 70) --infill-only-where-needed Only infill under ceilings (default: no) --infill-first Make infill before perimeters (default: no) Quality options (slower slicing): --extra-perimeters Add more perimeters when needed (default: yes) --avoid-crossing-perimeters Optimize travel moves so that no perimeters are crossed (default: no) --thin-walls Detect single-width walls (default: yes) --overhangs Experimental option to use bridge flow, speed and fan for overhangs (default: yes) Support material options: --support-material Generate support material for overhangs --support-material-threshold Overhang threshold angle (range: 0-90, set 0 for automatic detection, default: 0) --support-material-pattern Pattern to use for support material (default: honeycomb) --support-material-spacing Spacing between pattern lines (mm, default: 2.5) --support-material-angle Support material angle in degrees (range: 0-90, default: 0) --support-material-contact-distance Vertical distance between object and support material (0+, default: 0.2) --support-material-interface-layers Number of perpendicular layers between support material and object (0+, default: 3) --support-material-interface-spacing Spacing between interface pattern lines (mm, set 0 to get a solid layer, default: 0) --raft-layers Number of layers to raise the printed objects by (range: 0+, default: 0) --support-material-enforce-layers Enforce support material on the specified number of layers from bottom, regardless of --support-material and threshold (0+, default: 0) --dont-support-bridges Experimental option for preventing support material from being generated under bridged areas (default: yes) Retraction options: --retract-length Length of retraction in mm when pausing extrusion (default: 1) --retract-speed Speed for retraction in mm/s (default: 30) --retract-restart-extra Additional amount of filament in mm to push after compensating retraction (default: 0) --retract-before-travel Only retract before travel moves of this length in mm (default: 2) --retract-lift Lift Z by the given distance in mm when retracting (default: 0) --retract-lift-above Only lift Z when above the specified height (default: 0) --retract-lift-below Only lift Z when below the specified height (default: 0) --retract-layer-change Enforce a retraction before each Z move (default: no) --wipe Wipe the nozzle while doing a retraction (default: no) Retraction options for multi-extruder setups: --retract-length-toolchange Length of retraction in mm when disabling tool (default: 10) --retract-restart-extra-toolchange Additional amount of filament in mm to push after switching tool (default: 0) Cooling options: --cooling Enable fan and cooling control --min-fan-speed Minimum fan speed (default: 35%) --max-fan-speed Maximum fan speed (default: 100%) --bridge-fan-speed Fan speed to use when bridging (default: 100%) --fan-below-layer-time Enable fan if layer print time is below this approximate number of seconds (default: 60) --slowdown-below-layer-time Slow down if layer print time is below this approximate number of seconds (default: 30) --min-print-speed Minimum print speed (mm/s, default: 10) --disable-fan-first-layers Disable fan for the first N layers (default: 1) --fan-always-on Keep fan always on at min fan speed, even for layers that don't need cooling Skirt options: --skirts Number of skirts to draw (0+, default: 1) --skirt-distance Distance in mm between innermost skirt and object (default: 6) --skirt-height Height of skirts to draw (expressed in layers, 0+, default: 1) --min-skirt-length Generate no less than the number of loops required to consume this length of filament on the first layer, for each extruder (mm, 0+, default: 0) --brim-width Width of the brim that will get added to each object to help adhesion (mm, default: 0) Transform options: --scale Factor for scaling input object (default: 1) --rotate Rotation angle in degrees (0-360, default: 0) --duplicate Number of items with auto-arrange (1+, default: 1) --duplicate-grid Number of items with grid arrangement (default: 1,1) --duplicate-distance Distance in mm between copies (default: 6) --dont-arrange Don't arrange the objects on the build plate. The model coordinates define the absolute positions on the build plate. The option --print-center will be ignored. --xy-size-compensation Grow/shrink objects by the configured absolute distance (mm, default: 0) Sequential printing options: --complete-objects When printing multiple objects and/or copies, complete each one before starting the next one; watch out for extruder collisions (default: no) --extruder-clearance-radius Radius in mm above which extruder won't collide with anything (default: 20) --extruder-clearance-height Maximum vertical extruder depth; i.e. vertical distance from extruder tip and carriage bottom (default: 20) Miscellaneous options: --notes Notes to be added as comments to the output file --resolution Minimum detail resolution (mm, set zero for full resolution, default: 0) Flow options (advanced): --extrusion-width Set extrusion width manually; it accepts either an absolute value in mm (like 0.65) or a percentage over layer height (like 200%) --first-layer-extrusion-width Set a different extrusion width for first layer --perimeter-extrusion-width Set a different extrusion width for perimeters --external-perimeter-extrusion-width Set a different extrusion width for external perimeters --infill-extrusion-width Set a different extrusion width for infill --solid-infill-extrusion-width Set a different extrusion width for solid infill --top-infill-extrusion-width Set a different extrusion width for top infill --support-material-extrusion-width Set a different extrusion width for support material --infill-overlap Overlap between infill and perimeters (default: 15%) --bridge-flow-ratio Multiplier for extrusion when bridging (> 0, default: 1) Multiple extruder options: --extruder-offset Offset of each extruder, if firmware doesn't handle the displacement (can be specified multiple times, default: 0x0) --perimeter-extruder Extruder to use for perimeters and brim (1+, default: 1) --infill-extruder Extruder to use for infill (1+, default: 1) --solid-infill-extruder Extruder to use for solid infill (1+, default: 1) --support-material-extruder Extruder to use for support material, raft and skirt (1+, default: 1) --support-material-interface-extruder Extruder to use for support material interface (1+, default: 1) --ooze-prevention Drop temperature and park extruders outside a full skirt for automatic wiping (default: no) --ooze-prevention Drop temperature and park extruders outside a full skirt for automatic wiping (default: no) --standby-temperature-delta Temperature difference to be applied when an extruder is not active and --ooze-prevention is enabled (default: -5)
For more information about command line usage see the relevant manual page.
- State “✔ DONE” from [2022-09-02 sex 22:14]
- Thus, we need to parse the file and render each layer separately.
QGraphicsSvgItem provides a way of rendering SVG files onto QGraphicsView. QGraphicsSvgItem can be created by passing the SVG file to be rendered to its constructor or by explicit setting a shared QSvgRenderer on it.
Note that setting QSvgRenderer on a QGraphicsSvgItem doesn’t make the item take ownership of the renderer, therefore if using setSharedRenderer() method one has to make sure that the lifetime of the QSvgRenderer object will be at least as long as that of the QGraphicsSvgItem.
QGraphicsSvgItem provides a way of rendering only parts of the SVG files via the setElementId. If setElementId() method is called, only the SVG element (and its children) with the passed id will be renderer. This provides a convenient way of selectively rendering large SVG files that contain a number of discrete elements. For example the following code renders only jokers from a SVG file containing a whole card deck:
QSvgRenderer *renderer = new QSvgRenderer(QLatin1String("SvgCardDeck.svg"));
QGraphicsSvgItem *black = new QGraphicsSvgItem();
QGraphicsSvgItem *red = new QGraphicsSvgItem();
black->setSharedRenderer(renderer);
black->setElementId(QLatin1String("black_joker"));
red->setSharedRenderer(renderer);
red->setElementId(QLatin1String("red_joker"));
Size of the item can be set via direct manipulation of the items transformation matrix.
By default the SVG rendering is cached using QGraphicsItem::DeviceCoordinateCache mode to speedup the display of items. Caching can be disabled by passing QGraphicsItem::NoCache to the QGraphicsItem::setCacheMode() method.
See also QSvgWidget, Qt SVG C++ Classes, QGraphicsItem, and QGraphicsView.
- State “✔ DONE” from “☛ TODO” [2022-09-02 sex 22:14]
- State “☛ TODO” from [2022-05-02 seg 15:49]
code: src
QFile file("/home/zmpl/OneDrive-UM/Univ/PhD/Toolchain/PreManuf/Slic3r/3DMMLPBF-PreManuf/res/xml/books2.xml");
file.open(QFile::ReadOnly|QFile::Text);
QDomDocument dom;
QString error;
int line, column;
if(!dom.setContent(&file, &error, &line, &column)) {
qDebug() << "Error:" << error << "in line " << line << "column" << column;
file.close();
return;
}
file.close();
/**< Layer counter */
int layerCounter = 0;
// print out the element names of all elements that are direct children
// of the outermost element.
QDomElement docElem = dom.documentElement();
QDomNode n = docElem.firstChild();
while (!n.isNull()) {
QDomElement e = n.toElement(); // try to convert the node to an element.
if (!e.isNull()) {
qDebug() << qPrintable(e.tagName()); // the node really is an element.
qDebug() << " " << qPrintable(e.text()); // the node really is an element.
layerCounter++;
}
n = n.nextSibling();
}
Test xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<catalog>
<book id="bk101">
<author>Gambardella, Matthew</author>
<title>XML Developer's Guide</title>
<genre>Computer</genre>
<price>44.95</price>
<publish_date>2000-10-01</publish_date>
<description>An in-depth look at creating applications
with XML.</description>
</book>
<book id="bk102">
<author>Ralls, Kim</author>
<title>Midnight Rain</title>
<genre>Fantasy</genre>
<price>5.95</price>
<publish_date>2000-12-16</publish_date>
<description>A former architect battles corporate zombies,
an evil sorceress, and her own childhood to become queen
of the world.</description>
</book>
output
book Gambardella, MatthewXML Developer's GuideComputer44.952000-10-01An in-depth look at creating applications with XML. book Ralls, KimMidnight RainFantasy5.952000-12-16A former architect battles corporate zombies, an evil sorceress, and her own childhood to become queen of the world. .... "1/12"
bool MainWindow::parseXmlFile(const QString fname) {
QDomDocument dom;
QString error;
int line, column;
//QFile file("../res/xml/books2.xml");
QFile file(fname);
// QFile file(_outFname);
file.open(QFile::ReadOnly | QFile::Text);
/**< Set Document Object Model content */
if (!dom.setContent(&file, &error, &line, &column)) {
qDebug() << "Error:" << error << "in line " << line << "column" << column;
file.close();
return false;
}
file.close();
/**< Layer counter */
int layerCounter = 0;
// print out the element names of all elements that are direct children
// of the outermost element.
QDomElement docElem = dom.documentElement();
QDomNode n = docElem.firstChild();
while (!n.isNull()) {
QDomElement e = n.toElement(); // try to convert the node to an element.
// if (!e.isNull()) {
// qDebug() << qPrintable(e.tagName()); // the node really is an element.
// qDebug() << " " << qPrintable(e.text()); // the node really is an element.
// }
// Check if the child tag name is g (layer)
if (e.tagName() == "g") {
layerCounter++;
// Read and display the component ID
QString ID = e.attribute("id", "No ID");
QString zStr = e.attribute("slic3r:z", "No z");
QString matStr = e.attribute("slic3r:mat", "No mat");
// Get the first child of the component
//QDomElement Child = e.firstChild().toElement();
double z = zStr.toDouble() * 1000;
int mat = matStr.toInt();
//// Read each child of the component node
//while (!Child.isNull()) {
// // Read Z and Material
// if (Child.tagName() == "slic3r:z")
// z = Child.firstChild().toText().data().toDouble() * 1000; // micros
// if (Child.tagName() == "slic3r:mat")
// mat = Child.firstChild().toText().data().toInt();
// // Next child
// Child = Child.nextSibling().toElement();
//}
QStringList idParsed = ID.split('_');
QStringList layerParsed = idParsed.at(0).split('L');
// Display component data
qDebug() << "ID: " << ID ;
qDebug() << " Layer = " << layerParsed.at(1).toInt() ;
qDebug() << " z = " << z ;
qDebug() << " mat = " << mat ;
}
//// Next component
//Component = Component.nextSibling().toElement();
n = n.nextSibling();
}
/**< Update Layers Counter */
//int layerCur = 1;
//QString layerRange =
// QString::number(layerCur) + "/" + QString::number(layerCounter);
//qDebug() << layerRange;
//ui->svgLayersRange->setText(layerRange);
// _________________
// ::: Read data :::
// Get the first child of the root (Markup COMPONENT is expected)
// QDomElement Component = docElem.firstChild().toElement();
//
// // Loop while there is a child
// while (!Component.isNull()) {
//
// // Check if the child tag name is g (layer)
// if (Component.tagName() == "g") {
//
// // Read and display the component ID
// QString ID = Component.attribute("id", "No ID");
//
// // Get the first child of the component
// QDomElement Child = Component.firstChild().toElement();
//
// QString Name;
// double z;
// int mat;
//
// // Read each child of the component node
// while (!Child.isNull()) {
// // Read Z and Material
// if (Child.tagName() == "slic3r:z")
// z = Child.firstChild().toText().data().toDouble() * 1000; // micros
// if (Child.tagName() == "slic3r:mat")
// mat = Child.firstChild().toText().data().toInt();
//
// // Next child
// Child = Child.nextSibling().toElement();
// }
//
// QStringList idParsed = ID.split('_');
// // Display component data
// qDebug() << "Component " << ID ;
// qDebug() << " Layer = " << ID.at(0) ;
// qDebug() << " z = " << z ;
// qDebug() << " mat = " << mat ;
// }
//
// // Next component
// Component = Component.nextSibling().toElement();
// }
return true;
}
- State “✔ DONE” from [2022-05-02 seg 06:10]
- STL can be rendered together with absolute coordinates and they can be manipulated on scene.
- One needs to check if they can only rendered separately, or together with other files.
- Additionally, check if they be rotated or moved in the canvas.
#include <QGuiApplication>
#include <Qt3DCore/QEntity>
#include <Qt3DCore/QTransform>
#include <Qt3DCore/QAspectEngine>
#include <Qt3DRender/qrenderaspect.h>
#include <Qt3DRender/QCamera>
#include <Qt3DRender/QMaterial>
#include <Qt3DExtras/Qt3DWindow>
#include <Qt3DExtras/QTorusMesh>
#include <Qt3DExtras/QOrbitCameraController>
#include <Qt3DExtras/QPhongMaterial>
Qt3DCore::QEntity* createTestScene()
{
Qt3DCore::QEntity* root = new Qt3DCore::QEntity;
Qt3DCore::QEntity* torus = new Qt3DCore::QEntity(root);
Qt3DExtras::QTorusMesh* mesh = new Qt3DExtras::QTorusMesh;
mesh->setRadius(5);
mesh->setMinorRadius(1);
mesh->setRings(100);
mesh->setSlices(20);
Qt3DCore::QTransform* transform = new Qt3DCore::QTransform;
// transform->setScale3D(QVector3D(1.5, 1, 0.5));
transform->setRotation(QQuaternion::fromAxisAndAngle(QVector3D(1,0,0), 45.f ));
Qt3DRender::QMaterial* material = new Qt3DExtras::QPhongMaterial(root);
torus->addComponent(mesh);
torus->addComponent(transform);
torus->addComponent(material);
return root;
}
int main(int argc, char* argv[])
{
QGuiApplication app(argc, argv);
Qt3DExtras::Qt3DWindow view;
Qt3DCore::QEntity* scene = createTestScene();
// camera
Qt3DRender::QCamera *camera = view.camera();
camera->lens()->setPerspectiveProjection(45.0f, 16.0f/9.0f, 0.1f, 1000.0f);
camera->setPosition(QVector3D(0, 0, 40.0f));
camera->setViewCenter(QVector3D(0, 0, 0));
// manipulator
Qt3DExtras::QOrbitCameraController* manipulator = new Qt3DExtras::QOrbitCameraController(scene);
manipulator->setLinearSpeed(50.f);
manipulator->setLookSpeed(180.f);
manipulator->setCamera(camera);
view.setRootEntity(scene);
view.show();
return app.exec();
}
QGuiApplication a(argc, argv);
QUrl data = QUrl::fromLocalFile("C:/Qt/Examples/objloader2/cadtrainingblock24asc.stl");
Qt3DExtras::Qt3DWindow view;
Qt3DCore::QEntity *rootEntity = new Qt3DCore::QEntity;
Qt3DCore::QEntity *flyingwedge = new Qt3DCore::QEntity(rootEntity);
Qt3DExtras::QPhongMaterial *material = new Qt3DExtras::QPhongMaterial();
material->setDiffuse(QColor(254, 254, 254));
Qt3DRender::QMesh *flyingwedgeMesh = new Qt3DRender::QMesh;
flyingwedgeMesh->setMeshName("FlyingWedge");
flyingwedgeMesh->setSource(data);
flyingwedge->addComponent(flyingwedgeMesh);
flyingwedge->addComponent(material);
Qt3DRender::QCamera *camera = view.camera();
camera->lens()->setPerspectiveProjection(40.0f, 16.0f/9.0f, 0.1f, 1000.0f);
camera->setPosition(QVector3D(0, 0, 40.0f));
camera->setViewCenter(QVector3D(0, 0, 0));
Qt3DCore::QEntity *lightEntity = new Qt3DCore::QEntity(rootEntity);
Qt3DRender::QPointLight *light = new Qt3DRender::QPointLight(lightEntity);
light->setColor("white");
light->setIntensity(0.8f);
lightEntity->addComponent(light);
Qt3DCore::QTransform *lightTransform = new Qt3DCore::QTransform(lightEntity);
lightTransform->setTranslation(QVector3D(60, 0, 40.0f));
lightEntity->addComponent(lightTransform);
Qt3DExtras::QOrbitCameraController *camController = new Qt3DExtras::QOrbitCameraController(rootEntity);
camController->setCamera(camera);
view.setRootEntity(rootEntity);
view.show();
return a.exec();
Qt3DExtras::Qt3DWindow view;
Qt3DCore::QEntity *rootEntity = new Qt3DCore::QEntity;
Qt3DCore::QEntity *flyingwedge = new Qt3DCore::QEntity(rootEntity);
Qt3DExtras::QPhongMaterial *material = new Qt3DExtras::QPhongMaterial();
material->setDiffuse(QColor(200, 200, 200));
Qt3DRender::QMesh *stlObjectMesh = new Qt3DRender::QMesh;
stlObjectMesh->setMeshName("Onshape");
stlObjectMesh->setSource(data);
flyingwedge->addComponent(stlObjectMesh);
flyingwedge->addComponent(material);
Qt3DRender::QCamera *camera = view.camera();
camera->lens()->setPerspectiveProjection(1000.0f, 16.0f/9.0f, 0.1f, 1000.0f);
camera->setPosition(QVector3D(-500, -100, 40.0f));
camera->setViewCenter(QVector3D(0, 0, 0));
Qt3DCore::QEntity *lightEntity = new Qt3DCore::QEntity(rootEntity);
Qt3DRender::QPointLight *light = new Qt3DRender::QPointLight(lightEntity);
light->setColor("white");
light->setIntensity(0.8f);
lightEntity->addComponent(light);
Qt3DCore::QTransform *lightTransform = new Qt3DCore::QTransform(lightEntity);
lightTransform->setTranslation(QVector3D(60, 0, 40.0f));
lightEntity->addComponent(lightTransform);
Qt3DExtras::QOrbitCameraController *camController = new Qt3DExtras::QOrbitCameraController(rootEntity);
camController->setCamera(camera);
camController->setLinearSpeed( 5000.0f );
camController->setLookSpeed( 1000.0f );
view.setRootEntity(rootEntity);
view.show();
private:
Qt3DCore::QEntity *m_rootEntity;
Qt3DExtras::QTorusMesh *m_torus;
Qt3DCore::QEntity *m_coneEntity;
Qt3DCore::QEntity *m_cylinderEntity;
Qt3DCore::QEntity *m_torusEntity;
Qt3DCore::QEntity *m_cuboidEntity;
Qt3DCore::QEntity *m_planeEntity;
Qt3DCore::QEntity *m_sphereEntity;
// Torus shape data
//! [0]
m_torus = new Qt3DExtras::QTorusMesh();
m_torus->setRadius(1.0f);
m_torus->setMinorRadius(0.4f);
m_torus->setRings(100);
m_torus->setSlices(20);
//! [0]
// TorusMesh Transform
//! [1]
Qt3DCore::QTransform *torusTransform = new Qt3DCore::QTransform();
torusTransform->setScale(2.0f);
torusTransform->setRotation(QQuaternion::fromAxisAndAngle(QVector3D(0.0f, 1.0f, 0.0f), 25.0f));
torusTransform->setTranslation(QVector3D(5.0f, 4.0f, 0.0f));
//! [1]
//! [2]
Qt3DExtras::QPhongMaterial *torusMaterial = new Qt3DExtras::QPhongMaterial();
torusMaterial->setDiffuse(QColor(QRgb(0xbeb32b)));
//! [2]
// Torus
//! [3]
m_torusEntity = new Qt3DCore::QEntity(m_rootEntity);
m_torusEntity->addComponent(m_torus);
m_torusEntity->addComponent(torusMaterial);
m_torusEntity->addComponent(torusTransform);
//! [3]
// Cone shape data
Qt3DExtras::QConeMesh *cone = new Qt3DExtras::QConeMesh();
cone->setTopRadius(0.5);
cone->setBottomRadius(1);
cone->setLength(3);
cone->setRings(50);
cone->setSlices(20);
// ConeMesh Transform
Qt3DCore::QTransform *coneTransform = new Qt3DCore::QTransform();
coneTransform->setScale(1.5f);
coneTransform->setRotation(QQuaternion::fromAxisAndAngle(QVector3D(1.0f, 0.0f, 0.0f), 45.0f));
coneTransform->setTranslation(QVector3D(0.0f, 4.0f, -1.5));
Qt3DExtras::QPhongMaterial *coneMaterial = new Qt3DExtras::QPhongMaterial();
coneMaterial->setDiffuse(QColor(QRgb(0x928327)));
// Cone
m_coneEntity = new Qt3DCore::QEntity(m_rootEntity);
m_coneEntity->addComponent(cone);
m_coneEntity->addComponent(coneMaterial);
m_coneEntity->addComponent(coneTransform);
// Cylinder shape data
Qt3DExtras::QCylinderMesh *cylinder = new Qt3DExtras::QCylinderMesh();
cylinder->setRadius(1);
cylinder->setLength(3);
cylinder->setRings(100);
cylinder->setSlices(20);
// CylinderMesh Transform
Qt3DCore::QTransform *cylinderTransform = new Qt3DCore::QTransform();
cylinderTransform->setScale(1.5f);
cylinderTransform->setRotation(QQuaternion::fromAxisAndAngle(QVector3D(1.0f, 0.0f, 0.0f), 45.0f));
cylinderTransform->setTranslation(QVector3D(-5.0f, 4.0f, -1.5));
Qt3DExtras::QPhongMaterial *cylinderMaterial = new Qt3DExtras::QPhongMaterial();
cylinderMaterial->setDiffuse(QColor(QRgb(0x928327)));
// Cylinder
m_cylinderEntity = new Qt3DCore::QEntity(m_rootEntity);
m_cylinderEntity->addComponent(cylinder);
m_cylinderEntity->addComponent(cylinderMaterial);
m_cylinderEntity->addComponent(cylinderTransform);
// Cuboid shape data
Qt3DExtras::QCuboidMesh *cuboid = new Qt3DExtras::QCuboidMesh();
// CuboidMesh Transform
Qt3DCore::QTransform *cuboidTransform = new Qt3DCore::QTransform();
cuboidTransform->setScale(4.0f);
cuboidTransform->setTranslation(QVector3D(5.0f, -4.0f, 0.0f));
Qt3DExtras::QPhongMaterial *cuboidMaterial = new Qt3DExtras::QPhongMaterial();
cuboidMaterial->setDiffuse(QColor(QRgb(0x665423)));
//Cuboid
m_cuboidEntity = new Qt3DCore::QEntity(m_rootEntity);
m_cuboidEntity->addComponent(cuboid);
m_cuboidEntity->addComponent(cuboidMaterial);
m_cuboidEntity->addComponent(cuboidTransform);
// Plane shape data
Qt3DExtras::QPlaneMesh *planeMesh = new Qt3DExtras::QPlaneMesh();
planeMesh->setWidth(2);
planeMesh->setHeight(2);
// Plane mesh transform
Qt3DCore::QTransform *planeTransform = new Qt3DCore::QTransform();
planeTransform->setScale(1.3f);
planeTransform->setRotation(QQuaternion::fromAxisAndAngle(QVector3D(1.0f, 0.0f, 0.0f), 45.0f));
planeTransform->setTranslation(QVector3D(0.0f, -4.0f, 0.0f));
Qt3DExtras::QPhongMaterial *planeMaterial = new Qt3DExtras::QPhongMaterial();
planeMaterial->setDiffuse(QColor(QRgb(0xa69929)));
// Plane
m_planeEntity = new Qt3DCore::QEntity(m_rootEntity);
m_planeEntity->addComponent(planeMesh);
m_planeEntity->addComponent(planeMaterial);
m_planeEntity->addComponent(planeTransform);
// Sphere shape data
Qt3DExtras::QSphereMesh *sphereMesh = new Qt3DExtras::QSphereMesh();
sphereMesh->setRings(20);
sphereMesh->setSlices(20);
sphereMesh->setRadius(2);
// Sphere mesh transform
Qt3DCore::QTransform *sphereTransform = new Qt3DCore::QTransform();
sphereTransform->setScale(1.3f);
sphereTransform->setTranslation(QVector3D(-5.0f, -4.0f, 0.0f));
Qt3DExtras::QPhongMaterial *sphereMaterial = new Qt3DExtras::QPhongMaterial();
sphereMaterial->setDiffuse(QColor(QRgb(0xa69929)));
// Sphere
m_sphereEntity = new Qt3DCore::QEntity(m_rootEntity);
m_sphereEntity->addComponent(sphereMesh);
m_sphereEntity->addComponent(sphereMaterial);
m_sphereEntity->addComponent(sphereTransform);
- State “✔ DONE” from “☛ TODO” [2022-06-21 ter 22:56]
- State “☛ TODO” from [2022-06-19 dom 22:02]
- State “✔ DONE” from [2022-04-29 sex 17:36]
It is desirable to apply different toolpaths parameters for each model (material).
- One needs to check if this is possible
- And, if it’s possible how will the different configurations be used?
- A viable solution is to parse the files separately, contingent of the same layer height, sort them by Z-value, and in the end, write the file.
- Slice and generate toolpaths using one of the following approaches
It is also desirable to add custom toolpaths, adequate for LPBF.
- State “✔ DONE” from [2022-08-22 seg 17:32]
- The models can be added, independently of their dimensions
- However, if any model exceeds the dimensions of the machine version selected, then it cant be processed
- The bounding box should be added as a wireframe
- State “✔ DONE” from “☛ TODO” [2022-08-22 seg 17:31]
- Partially completed. Bounding box is black but visible
- State “☛ TODO” from [2022-06-19 dom 22:05]
- The bounding box should be added as a wireframe
- State “✔ DONE” from [2022-10-08 sáb 23:28]
- State “✔ DONE” from [2022-04-30 sáb 00:35]
- State “✔ DONE” from [2022-04-30 sáb 00:35]
- Basic: without config file (explicit), but defined parameters
- Expert: full file
# Basic # Bottom bottom_infill_pattern = rectilinear # Fill angle fill_angle = 45 fill_density = 50% fill_gaps = 1 fill_pattern = honeycomb # Infill infill_extrusion_width = 0.1 infill_first = 0 infill_only_where_needed = 0 infill_overlap = 55% layer_height = 0.1 # Top layer top_infill_extrusion_width = 0 top_infill_pattern = rectilinear
- State “✔ DONE” from “☛ TODO” [2022-05-02 seg 15:48]
- State “☛ TODO” from [2022-05-02 seg 15:48]
- State “✔ DONE” from [2023-03-24 Fri 16:32]
- a generic config, by loading a config file
- a specific config, which can be individually applied to each input model and overwrites the generic options
- State “✔ DONE” from [2022-04-30 sáb 04:38]
- State “✔ DONE” from [2023-03-24 Fri 16:29]
@startuml
!$end_bracket = "<b> </b>"
'-----------------------
note right
<b>GIFGenerator</b>
Thread to generate GIFs
end note
'-----------------------
start
(1)
:pthread_mutex_lock( &gif_generate_mut )
pthread_cond_wait( &gif_generate_cond, &gif_generate_mut )
pthread_mutex_unlock( &gif_generate_mut );
''
note right
check start
condition
end note
''
repeat
:start timer(&tim_on, duration_on);
''
note right
Start ON timer
end note
''
if(tim_on == elapsed?) then (Y)
:fname = 'gif.gif'
gif.save(fname,'w')
pthread_mutex_lock( &gif_done_mut )
pthread_cond_wait( &gif_done_cond, &gif_done_mut )
pthread_mutex_unlock( &gif_done_mut );
note left
Save gif file
and signal that
GIF is done
end note
''
(1)
detach
else (N)
endif
:pthread_mutex_lock (&cam_fifo_mutex)
sem_wait (&cam_fifo_count)
pop cam_frame from cam_fifo
pthread_mutex_unlock (&cam_fifo_mutex);
''
note right
get camera frame
end note
''
repeat
:gif.push(cam_frame);
''
note right
store image
in GIF buffer
end note
''
repeat while()
repeat while(execution aborted?) is (N)
->Y;
stop
'-----------------------
@enduml
@startuml
!$end_bracket = "<b> </b>"
'-----------------------
note right
<b>selectMachVersion</b>
callback for when user presses the selectMachVersion pushbutton
end note
'-----------------------
start
if( !_stlList.empty() ) then (Y)
:s = _stlList.takeAt(0)
s->~Stl()
else (N)
:Mach *m = getCurrentMach()
s = new Stl(_stlScene)
s->generateBB(m->dims(), m->coordsType())
_stlList.push_front(s)
endif
stop
'-----------------------
@enduml
<<<<<<< HEAD <<<<<<< HEAD
- State “✘ CANCELED” from [2023-03-24 Fri 17:52]
src: GUI/Preset.hpp
/// store to keep config options for this preset
Slic3r::Config config { Slic3r::Config() };
/// Alternative config store for a modified configuration.
Slic3r::Config dirty_config {Slic3r::Config()};
std::string file {""};
/// reach through to the appropriate material type
t_config_option_keys _group_class();
- State “▭▭ IN-PROGRESS” from [2023-03-25 Sat 17:56]
- First and last layer are not filled - only the contours show up
- Intermediate layers only have filling - they lack perimeters
Furthermore, because these are derived from 3D printing:
- Filling has bridges between edges - the trajectory is fully connected
- Filling has width (infill extrusion width) - this causes the laser paths to be doubled, because it uses the external perimeters of the infill
- Filling paths aims to minimize the travel distance of the extruder, while the laser paths may require a different manufacturing order: e.g., paths always starting from the leftmost intersection points and reaching the rightmost ones.
- State “☛ TODO” from [2023-03-25 Sat 17:56]
- Rectilinear: rectilinear, aligned rectilinear, grid, triangles, stars, cubic
- Concentric
- Planar: Archimedean chords, Hillbert Curve, Octagram Spiral
- Honeycomb: honeycomb and 3D Honeycomb
- Gyroid