A simple implementation of the Scene Identification and Tagging algorithm (SIT) injected in a ROS Multi Ontology References service (aRMOR).
- Run the service
rosrun sit_armor_injected execute it.emarolab.sitArmorInjected.SitArmorInjectedService
- or launch it from roslaunch
<node pkg="sit_armor" type="execute" name="sit_armor_injected" args="it.emarolab.sitArmorInjected.SitArmorInjectedService"/>
- load the ontology through aRMOR (where
ros_ws
is the ROS workspace in the home)
rosservice call /armor_interface_srv "armor_request:
client_name: ''
reference_name: 'ontoSIT'
command: 'LOAD'
primary_command_spec: 'FILE'
secondary_command_spec: ''
args: ['src/injected_armor_pkgs/scene_identification_tagging/sit/src/main/resources/simpleSIT.owl', 'http://www.emarolab.it/sit/simple', 'true', 'pellet', 'true']"
- test some simple scenes
rosservice call /sit_armor_injected "ontoReference: 'ontoSIT'
sceneElements:
- type: 'SPHERE'
features:
- 0.0
- 0.0
- 0.0
- type: 'SPHERE'
features:
- 0.8
- 0.0
- 0.8
learningTreshold: 0.9"
rosservice call /sit_armor_injected "ontoReference: 'ontoSIT'
sceneElements:
- type: 'SPHERE'
features:
- 0.0
- 0.0
- 0.0
- type: 'CONE'
features:
- -0.8
- -0.8
- -0.0
- 0
- 0
- 1
learningTreshold: 0.9"
rosservice call /sit_armor_injected "ontoReference: 'ontoSIT'
sceneElements:
- type: 'SPHERE'
features:
- 0.0
- 0.0
- 0.0
- type: 'CONE'
features:
- -0.8
- -0.8
- -0.0
- 0
- 0
- 1
- type: 'SPHERE'
features:
- 0.8
- 0.0
- 0.8
learningTreshold: 0.9"
For comment, discussions or support refer to this git repository open issues before to contact us