This guide will walk you through integrating Looker with Generative AI Studio (Vertex AI) via Cloud Functions using the Looker Action API. Users can use the Looker Explore to examine data, then send the Looker query to a Cloud Function, specifying the model prompt and parameters on the form submissions.
There are three Cloud Functions included in this demo that are used to communicate from Looker to Vertex AI via the Action API:
action_list
- Lists the metadata for the action, including the form and execute endpointsaction_form
- The dynamic form template to presented to users to send parameters to the execute endpointaction_execute
- The function to run the prediction on the data that is being sent, and send an email
Before following the steps below, make sure you have enabled the Secret Manager API, Cloud Build API, Cloud Functions API, and the Vertex AI API. It will take a few minutes after enabling this APIs for it to propagate through the systems.
Also make sure you have a Sendgrid account and API key to use for sending emails. You can create a free developer account from the GCP marketplace.
Use Cloud Shell or the gcloud CLI
for the following steps.
The two variables you must to modify are:
PROJECT
- ID you want to deploy the Cloud Functions toEMAIL_SENDER
- Email address of the sender
-
Create table in bigquery using below statement:
Create or replace table `transportation-platform-376719.transportation_data_aiml.genai_vertex-ai-looker-actions` ( query_time TIMESTAMP, question_genai STRING, look_title STRING, looker_source_data STRING, looker_scheduled_plan STRING, action_parameters_looker STRING, form_parameters_genai STRING, answer_genai STRING );
-
Set the variables below:
ACTION_LABEL="Vertex AI" ACTION_NAME="vertex-ai" REGION="us-central1" PROJECT="my-project-id" EMAIL_SENDER="[email protected]"
-
Clone this repo
git clone https://github.com/looker-open-source/vertex-ai-actions cd vertex-ai-actions/
-
Create a .env.yaml with variables:
printf "ACTION_LABEL: ${ACTION_LABEL}\nACTION_NAME: ${ACTION_NAME}\nREGION: ${REGION}\nPROJECT: ${PROJECT}\nEMAIL_SENDER: ${EMAIL_SENDER}" > .env.yaml
-
Generate the LOOKER_AUTH_TOKEN secret. The auth token secret can be any randomly generated string. You can generate such a string with the openssl command:
LOOKER_AUTH_TOKEN="`openssl rand -hex 64`"
-
Add the Auth Token and Sendgird API key as Secrets, then create a Service Account to run the Cloud Functions and give it access to the Secrets:
SENDGRID_API_KEY="copy your sendgrid api key here" printf ${SENDGRID_API_KEY} | gcloud secrets create SENDGRID_API_KEY --data-file=- --replication-policy=user-managed --locations=${REGION} --project=${PROJECT} printf ${LOOKER_AUTH_TOKEN} | gcloud secrets create LOOKER_AUTH_TOKEN --data-file=- --replication-policy=user-managed --locations=${REGION} --project=${PROJECT} gcloud iam service-accounts create vertex-ai-actions-cloud-function --display-name="Vertex AI Actions Cloud Functions" --project=${PROJECT} SERVICE_ACCOUNT_EMAIL=vertex-ai-actions-cloud-function@${PROJECT}.iam.gserviceaccount.com eval gcloud projects add-iam-policy-binding ${PROJECT} --member=serviceAccount:${SERVICE_ACCOUNT_EMAIL} --role='roles/cloudfunctions.invoker' eval gcloud projects add-iam-policy-binding ${PROJECT} --member=serviceAccount:${SERVICE_ACCOUNT_EMAIL} --role='roles/aiplatform.user' eval gcloud projects add-iam-policy-binding ${PROJECT} --member=serviceAccount:${SERVICE_ACCOUNT_EMAIL} --role='roles/secretmanager.secretAccessor' eval gcloud projects add-iam-policy-binding ${PROJECT} --member=serviceAccount:${SERVICE_ACCOUNT_EMAIL} --role='roles/bigquery.dataEditor' eval gcloud secrets add-iam-policy-binding SENDGRID_API_KEY --member=serviceAccount:${SERVICE_ACCOUNT_EMAIL} --role='roles/secretmanager.secretAccessor' --project=${PROJECT} eval gcloud secrets add-iam-policy-binding LOOKER_AUTH_TOKEN --member=serviceAccount:${SERVICE_ACCOUNT_EMAIL} --role='roles/secretmanager.secretAccessor' --project=${PROJECT}
-
Deploy 3 cloud functions for action hub listing, action form, and action execute (this may take a few minutes):
gcloud functions deploy vertex-ai-list --entry-point action_list --env-vars-file .env.yaml --trigger-http --runtime=python311 --allow-unauthenticated --timeout=540s --region=${REGION} --project=${PROJECT} --service-account ${SERVICE_ACCOUNT_EMAIL} --set-secrets 'LOOKER_AUTH_TOKEN=LOOKER_AUTH_TOKEN:latest' gcloud functions deploy vertex-ai-form --entry-point action_form --env-vars-file .env.yaml --trigger-http --runtime=python311 --allow-unauthenticated --timeout=540s --region=${REGION} --project=${PROJECT} --service-account ${SERVICE_ACCOUNT_EMAIL} --set-secrets 'LOOKER_AUTH_TOKEN=LOOKER_AUTH_TOKEN:latest' gcloud functions deploy vertex-ai-execute --entry-point action_execute --env-vars-file .env.yaml --trigger-http --runtime=python311 --allow-unauthenticated --timeout=540s --region=${REGION} --project=${PROJECT} --service-account ${SERVICE_ACCOUNT_EMAIL} --set-secrets 'LOOKER_AUTH_TOKEN=LOOKER_AUTH_TOKEN:latest,SENDGRID_API_KEY=SENDGRID_API_KEY:latest' --memory=4096MB
-
Copy the Action Hub URL (
action_list
endpoint) and theLOOKER_AUTH_TOKEN
to input into Looker:echo Action Hub URL: https://${REGION}-${PROJECT}.cloudfunctions.net/${ACTION_NAME}-list echo LOOKER_AUTH_TOKEN: $LOOKER_AUTH_TOKEN
-
In Looker, go to the Admin > Actions page and click Add Action Hub
- Enter the Action Hub URL
- click Configure Authorization and enter the
LOOKER_AUTH_TOKEN
value for the Authorization Token and click Enable - Toggle the Enabled button and click Save
If the action build fails, you will receive an email notification. Go to the Admin > Scheduler History page to view the error message returned from the Action or use scheduled_plan
System Activity Explore:
-
Explore query to see details on action executions:
https://${YOUR_LOOKER_DOMAIN}.com/explore/system__activity/scheduled_plan?fields=scheduled_job.id,scheduled_job.created_time,scheduled_plan_destination.action_type,scheduled_plan_destination.format,scheduled_job.status,scheduled_plan.run_once,scheduled_plan_destination.parameters,scheduled_job.status_detail&f[scheduled_plan_destination.action_type]=vertex-ai&sorts=scheduled_job.created_time+desc&limit=500