Skip to content

Commit

Permalink
Improvements to single-detector trigger fitting code for PyCBC Live (g…
Browse files Browse the repository at this point in the history
…wastro#4486)

* Cleanup

* Cleanup

* Refactor duration bin parsing code and add support for reading from bank

* Minor fix/cleanup to logging

* Update CLI checks for duration bins

* Cleanup

* Ignore inconsistent config when combining

* Fix bug

* Fix typo

Co-authored-by: Gareth S Cabourn Davies <[email protected]>

* Comment from Gareth

---------

Co-authored-by: Gareth S Cabourn Davies <[email protected]>
  • Loading branch information
titodalcanton and GarethCabournDavies committed Oct 9, 2023
1 parent 185a377 commit dfe2ad4
Show file tree
Hide file tree
Showing 2 changed files with 160 additions and 113 deletions.
121 changes: 69 additions & 52 deletions bin/live/pycbc_live_combine_single_fits
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,10 @@
"""Combine PyCBC Live single-detector trigger fitting parameters from several
different files."""

import h5py, numpy as np, argparse
import argparse
import logging
import numpy as np
import h5py
import pycbc


Expand Down Expand Up @@ -45,66 +47,80 @@ if args.conservative_percentile < 50 or \
"otherwise it is either not a percentile, or not "
"conservative.")

counts_all = {ifo: [] for ifo in args.ifos}
alphas_all = {ifo: [] for ifo in args.ifos}
analysis_dates = []
logging.info("%d input files", len(args.trfits_files))

# We only want to combine fit results if they were done with the same
# configuration. So start by finding the most recent fit file and reading its
# configuration parameters.

with h5py.File(args.trfits_files[0], 'r') as fit_f0:
# Store some attributes so we can check that all files are
# comparable
logging.info("Determining the most recent configuration parameters")

# Keep the upper and lower bins
bl = fit_f0['bins_lower'][:]
bu = fit_f0['bins_upper'][:]
latest_date = None
for f in args.trfits_files:
with h5py.File(f, 'r') as fit_f:
if latest_date is None or fit_f.attrs['analysis_date'] > latest_date:
latest_date = fit_f.attrs['analysis_date']
bl = fit_f['bins_lower'][:]
bu = fit_f['bins_upper'][:]
sngl_rank = fit_f.attrs['sngl_ranking']
fit_thresh = fit_f.attrs['fit_threshold']
fit_func = fit_f.attrs['fit_function']

sngl_rank = fit_f0.attrs['sngl_ranking']
fit_thresh = fit_f0.attrs['fit_threshold']
fit_func = fit_f0.attrs['fit_function']
# Now go back through the fit files and read the actual information. Skip the
# files that have fit parameters inconsistent with what we found earlier.

live_times = {ifo: [] for ifo in args.ifos}
logging.info("Reading individual fit results")

live_times = {ifo: [] for ifo in args.ifos}
trigger_file_starts = []
trigger_file_ends = []

n_files = len(args.trfits_files)
logging.info("Checking through %d files", n_files)
counts_all = {ifo: [] for ifo in args.ifos}
alphas_all = {ifo: [] for ifo in args.ifos}

for f in args.trfits_files:
fits_f = h5py.File(f, 'r')
# Check that the file uses the same setup as file 0, to make sure
# all coefficients are comparable

assert fits_f.attrs['sngl_ranking'] == sngl_rank
assert fits_f.attrs['fit_threshold'] == fit_thresh
assert fits_f.attrs['fit_function'] == fit_func
assert all(fits_f['bins_lower'][:] == bl)
assert all(fits_f['bins_upper'][:] == bu)

# Get the time of the first/last triggers in the trigger_fits file
gps_last = 0
gps_first = np.inf
for ifo in args.ifos:
if ifo not in fits_f:
with h5py.File(f, 'r') as fits_f:
# Check that the file uses the same setup as file 0, to make sure
# all coefficients are comparable
same_conf = (fits_f.attrs['sngl_ranking'] == sngl_rank
and fits_f.attrs['fit_threshold'] == fit_thresh
and fits_f.attrs['fit_function'] == fit_func
and all(fits_f['bins_lower'][:] == bl)
and all(fits_f['bins_upper'][:] == bu))
if not same_conf:
logging.warn(
"Found a change in the fit configuration, skipping %s",
f
)
continue
trig_times = fits_f[ifo]['triggers']['end_time'][:]
gps_last = max(gps_last, trig_times.max())
gps_first = min(gps_first, trig_times.min())
trigger_file_starts.append(gps_first)
trigger_file_ends.append(gps_last)

for ifo in args.ifos:
if ifo not in fits_f:
live_times[ifo].append(0)
counts_all[ifo].append(-1 * np.ones_like(bl))
alphas_all[ifo].append(-1 * np.ones_like(bl))
else:
live_times[ifo].append(fits_f[ifo].attrs['live_time'])
counts_all[ifo].append(fits_f[ifo + '/counts'][:])
alphas_all[ifo].append(fits_f[ifo + '/fit_coeff'][:])
if any(np.isnan(fits_f[ifo + '/fit_coeff'][:])):
logging.info("nan in %s, %s", f, ifo)
logging.info(fits_f[ifo + '/fit_coeff'][:])
fits_f.close()

# We now determine the (approximate) start/end times of the
# trigger_fits file via the time of the first/last triggers in it.
# Ideally this would be recorded exactly in the file.
gps_last = 0
gps_first = np.inf
for ifo in args.ifos:
if ifo not in fits_f:
continue
trig_times = fits_f[ifo]['triggers']['end_time'][:]
gps_last = max(gps_last, trig_times.max())
gps_first = min(gps_first, trig_times.min())
trigger_file_starts.append(gps_first)
trigger_file_ends.append(gps_last)

# Read the fitting parameters
for ifo in args.ifos:
if ifo not in fits_f:
live_times[ifo].append(0)
counts_all[ifo].append(-1 * np.ones_like(bl))
alphas_all[ifo].append(-1 * np.ones_like(bl))
else:
ffi = fits_f[ifo]
live_times[ifo].append(ffi.attrs['live_time'])
counts_all[ifo].append(ffi['counts'][:])
alphas_all[ifo].append(ffi['fit_coeff'][:])
if any(np.isnan(ffi['fit_coeff'][:])):
logging.warn("nan in %s, %s", f, ifo)
logging.warn(ffi['fit_coeff'][:])

# Set up the date array, this is stored as an offset from the first trigger time of
# the first file to the last trigger of the file
Expand All @@ -115,7 +131,7 @@ ad_order = np.argsort(trigger_file_starts)
start_time_n = trigger_file_starts[ad_order[0]]
ad = trigger_file_ends[ad_order] - start_time_n

# Get the counts and alphas
# Swap the time and bin dimensions for counts and alphas
counts_bin = {ifo: [c for c in zip(*counts_all[ifo])] for ifo in args.ifos}
alphas_bin = {ifo: [a for a in zip(*alphas_all[ifo])] for ifo in args.ifos}

Expand All @@ -125,6 +141,7 @@ cons_alphas_out = {ifo: np.zeros(len(alphas_bin[ifo])) for ifo in args.ifos}
cons_counts_out = {ifo: np.inf * np.ones(len(alphas_bin[ifo])) for ifo in args.ifos}

logging.info("Writing results")

fout = h5py.File(args.output, 'w')
fout.attrs['fit_threshold'] = fit_thresh
fout.attrs['conservative_percentile'] = args.conservative_percentile
Expand Down
Loading

0 comments on commit dfe2ad4

Please sign in to comment.