Code release for Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering (CVPR2020-Oral).
The paper is avaliable here.
- Python 3.6.3
- Pytorch 1.1.0
The structure of the dataset should be like
Office31
|_ amazon
| |_ back_pack
| |_ <im-1-name>.jpg
| |_ ...
| |_ bike
| |_ <im-1-name>.jpg
| |_ ...
| |_ ... (omit 28 classes)
| |_ trash_can
| |_ <im-1-name>.jpg
| |_ ...
|_ amazon_half
| |_ back_pack
| |_ <im-1-name>.jpg
| |_ ...
| |_ bike
| |_ <im-1-name>.jpg
| |_ ...
| |_ ... (omit 28 classes)
| |_ trash_can
| |_ <im-1-name>.jpg
| |_ ...
|_ amazon_half2
| |_ back_pack
| |_ <im-1-name>.jpg
| |_ ...
| |_ bike
| |_ <im-1-name>.jpg
| |_ ...
| |_ ... (omit 28 classes)
| |_ trash_can
| |_ <im-1-name>.jpg
| |_ ...
|_ dslr
| |_ back_pack
| |_ <im-1-name>.jpg
| |_ ...
| |_ bike
| |_ <im-1-name>.jpg
| |_ ...
| |_ ... (omit 28 classes)
| |_ trash_can
| |_ <im-1-name>.jpg
| |_ ...
|_ ...
Replace paths and domains in run_office31.sh with those in your own system.
@InProceedings{srdc,
title={Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering},
author={Hui Tang, Ke Chen, and Kui Jia},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2020},
}