Skip to content

Commit

Permalink
remove unused exists var
Browse files Browse the repository at this point in the history
  • Loading branch information
Plisp authored and mn200 committed Sep 28, 2023
1 parent 1b093a7 commit 4b9c991
Showing 1 changed file with 3 additions and 3 deletions.
6 changes: 3 additions & 3 deletions src/coalgebras/itreeTauScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -511,7 +511,7 @@ Theorem itree_bisimulation:
?R. R t1 t2 /\
(!x t. R (Ret x) t ==> t = Ret x) /\
(!u t. R (Tau u) t ==> ?v. t = Tau v /\ R u v) /\
(!a f t. R (Vis a f) t ==> ?b g. t = Vis a g /\ !s. R (f s) (g s))
(!a f t. R (Vis a f) t ==> ?g. t = Vis a g /\ !s. R (f s) (g s))
Proof
rw [] \\ eq_tac \\ rw []
THEN1 (qexists_tac ‘(=)’ \\ fs [itree_11])
Expand Down Expand Up @@ -580,7 +580,7 @@ Definition itree_bind_def:
Ret s =>
Ret' s
| Tau t =>
Tau'(INR t)
Tau' (INR t)
| Vis e g =>
Vis' e (INR o g))
| INL(Vis e g) => Vis' e (INL o g)
Expand Down Expand Up @@ -1024,7 +1024,7 @@ Proof
QED

Theorem itree_bind_resp_wbisim:
!a b k1 k2. (itree_wbisim a b) ==> (!r. itree_wbisim (k1 r) (k2 r)) ==>
!a b k1 k2. (itree_wbisim a b) /\ (!r. itree_wbisim (k1 r) (k2 r)) ==>
(itree_wbisim (itree_bind a k1) (itree_bind b k2))
Proof
metis_tac[itree_bind_resp_t_wbisim, itree_bind_resp_k_wbisim, itree_wbisim_trans]
Expand Down

0 comments on commit 4b9c991

Please sign in to comment.