Skip to content

Commit

Permalink
Revert theory changes in 45c4596
Browse files Browse the repository at this point in the history
  • Loading branch information
digama0 committed Nov 11, 2024
1 parent 915ca1c commit 9b66b42
Show file tree
Hide file tree
Showing 3 changed files with 106 additions and 88 deletions.
13 changes: 4 additions & 9 deletions src/list/src/ListConv1.sml
Original file line number Diff line number Diff line change
Expand Up @@ -280,16 +280,11 @@ end;
(* ADDED: TFM 91.10.26 *)
(*---------------------------------------------------------------------*)

local
open Psyntax
val l1v = mk_var("l1", listSyntax.mk_list_type alpha)
val l2v = mk_var("l2", listSyntax.mk_list_type alpha)
val hv = mk_var("h", alpha)
val (th1,th2) = CONJ_PAIR (listTheory.APPEND)
val th3 = SPECL [hv,l1v,l2v] th2
val th4 = GENL [l2v,l1v,hv] th3
local val (th1,th2) = CONJ_PAIR (listTheory.APPEND)
val th3 = SPECL [%`l1: 'a list`, %`l2: 'a list`] th2
val th4 = GENL [%`l2: 'a list`, %`l1: 'a list`] th3
fun itfn (cns,ath) v th =
let val th1 = AP_TERM (mk_comb(cns,v)) th
let val th1 = AP_TERM (mk_comb{Rator=cns,Rand=v}) th
val l = rand(rator(rand(rator(concl th))))
in TRANS (SPEC v (SPEC l ath)) th1
end
Expand Down
176 changes: 102 additions & 74 deletions src/list/src/listScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -126,56 +126,72 @@ val list_Axiom_old = store_thm(
Now some definitions.
---------------------------------------------------------------------------*)

Definition NULL_DEF:
(NULL [] = T) /\
(NULL (h::t) = F)
End

Definition HD[simp]:
HD (h::t) = h
End

Definition TL_DEF[simp]:
TL [] = [] /\
TL (h::t) = t
End
Theorem TL = CONJUNCT2 TL_DEF

Definition SUM:
SUM [] = 0 /\
SUM (h::t) = h + SUM t
End

Definition APPEND[simp]:
APPEND [] l = l /\
APPEND (h::l1) l2 = h::APPEND l1 l2
End
val NULL_DEF = new_recursive_definition
{name = "NULL_DEF",
rec_axiom = list_Axiom,
def = “(NULL [] = T) /\
(NULL (h::t) = F)”};

val HD = new_recursive_definition
{name = "HD",
rec_axiom = list_Axiom,
def = “HD (h::t) = h”};
val _ = export_rewrites ["HD"]

val TL_DEF = new_recursive_definition
{name = "TL_DEF",
rec_axiom = list_Axiom,
def = “(TL [] = []) /\
(TL (h::t) = t)”};
val TL = save_thm("TL",CONJUNCT2 TL_DEF);
val _ = export_rewrites ["TL_DEF"];

val SUM = new_recursive_definition
{name = "SUM",
rec_axiom = list_Axiom,
def = “(SUM [] = 0) /\
(!h t. SUM (h::t) = h + SUM t)”};

val APPEND = new_recursive_definition
{name = "APPEND",
rec_axiom = list_Axiom,
def = “(!l:'a list. APPEND [] l = l) /\
(!l1 l2 h. APPEND (h::l1) l2 = h::APPEND l1 l2)”};
val _ = export_rewrites ["APPEND"]

val _ = set_fixity "++" (Infixl 480);
val _ = overload_on ("++", Term‘APPEND’);
val _ = Unicode.unicode_version {u = UnicodeChars.doubleplus, tmnm = "++"}
val _ = TeX_notation { hol = UnicodeChars.doubleplus,
TeX = ("\\HOLTokenDoublePlus", 1) }

Definition FLAT[simp]:
FLAT [] = [] /\
FLAT (h::t) = APPEND h (FLAT t)
End

Definition LENGTH[simp]:
LENGTH [] = 0 /\
LENGTH (h::t) = SUC (LENGTH t)
End

Definition MAP[simp]:
MAP f [] = [] /\
MAP f (h::t) = f h::MAP f t
End

Definition LIST_TO_SET_DEF[simp]:
(LIST_TO_SET [] x <=> F) /\
(LIST_TO_SET (h::t) x <=> (x = h) \/ LIST_TO_SET t x)
End
val FLAT = new_recursive_definition
{name = "FLAT",
rec_axiom = list_Axiom,
def = “(FLAT [] = []) /\
(!h t. FLAT (h::t) = APPEND h (FLAT t))”};
val _ = export_rewrites ["FLAT"]

val LENGTH = new_recursive_definition
{name = "LENGTH",
rec_axiom = list_Axiom,
def = “(LENGTH [] = 0) /\
(!(h:'a) t. LENGTH (h::t) = SUC (LENGTH t))”};
val _ = export_rewrites ["LENGTH"]

val MAP = new_recursive_definition
{name = "MAP",
rec_axiom = list_Axiom,
def = “(!f:'a->'b. MAP f [] = []) /\
(!f h t. MAP f (h::t) = f h::MAP f t)”};
val _ = export_rewrites ["MAP"]

val LIST_TO_SET_DEF = new_recursive_definition{
name = "LIST_TO_SET_DEF",
rec_axiom = list_Axiom,
def = “(!x:'a. LIST_TO_SET [] x <=> F) /\
(!h:'a t x. LIST_TO_SET (h::t) x <=> (x = h) \/ LIST_TO_SET t x)”}
val _ = export_rewrites ["LIST_TO_SET_DEF"]

val _ = overload_on ("set", “LIST_TO_SET”)
val _ = overload_on ("MEM", “\h:'a l:'a list. h IN LIST_TO_SET l”)
Expand All @@ -194,35 +210,48 @@ Proof
SRW_TAC [] [FUN_EQ_THM, IN_DEF]
QED

Definition FILTER[simp]:
FILTER P [] = [] /\
FILTER P (h::t) = if P h then (h::FILTER P t) else FILTER P t
End
val FILTER = new_recursive_definition
{name = "FILTER",
rec_axiom = list_Axiom,
def = “(!P. FILTER P [] = []) /\
(!(P:'a->bool) h t.
FILTER P (h::t) =
if P h then (h::FILTER P t) else FILTER P t)”};
val _ = export_rewrites ["FILTER"]

val FOLDR = new_recursive_definition
{name = "FOLDR",
rec_axiom = list_Axiom,
def = “(!f e. FOLDR (f:'a->'b->'b) e [] = e) /\
(!f e x l. FOLDR f e (x::l) = f x (FOLDR f e l))”};

val FOLDL = new_recursive_definition
{name = "FOLDL",
rec_axiom = list_Axiom,
def = “(!f e. FOLDL (f:'b->'a->'b) e [] = e) /\
(!f e x l. FOLDL f e (x::l) = FOLDL f (f e x) l)”};

val EVERY_DEF = new_recursive_definition
{name = "EVERY_DEF",
rec_axiom = list_Axiom,
def = “(!P:'a->bool. EVERY P [] = T) /\
(!P h t. EVERY P (h::t) <=> P h /\ EVERY P t)”};
val _ = export_rewrites ["EVERY_DEF"]

val EXISTS_DEF = new_recursive_definition
{name = "EXISTS_DEF",
rec_axiom = list_Axiom,
def = “(!P:'a->bool. EXISTS P [] = F)
/\ (!P h t. EXISTS P (h::t) <=> P h \/ EXISTS P t)”};
val _ = export_rewrites ["EXISTS_DEF"]

val EL = new_recursive_definition
{name = "EL",
rec_axiom = num_Axiom,
def = “(!l. EL 0 l = (HD l:'a)) /\
(!l:'a list. !n. EL (SUC n) l = EL n (TL l))”};

Definition FOLDR:
FOLDR (f:'a->'b->'b) e [] = e /\
FOLDR f e (x::l) = f x (FOLDR f e l)
End

Definition FOLDL:
FOLDL (f:'b->'a->'b) e [] = e /\
FOLDL f e (x::l) = FOLDL f (f e x) l
End

Definition EVERY_DEF[simp]:
(EVERY P [] <=> T) /\
(EVERY P (h::t) <=> P h /\ EVERY P t)
End

Definition EXISTS_DEF[simp]:
(EXISTS P [] <=> F) /\
(EXISTS P (h::t) <=> P h \/ EXISTS P t)
End

Definition EL:
EL 0 l = (HD l:'a) /\
EL (SUC n) l = EL n (TL l)
End

(* ---------------------------------------------------------------------*)
(* Definition of a function *)
Expand Down Expand Up @@ -1226,10 +1255,9 @@ val NOT_NULL_MEM = Q.store_thm
Cases_on ‘l’ THEN SIMP_TAC bool_ss [EXISTS_OR_THM, MEM, NOT_CONS_NIL, NULL]);

(* Computing EL when n is in numeral representation *)
Theorem EL_compute[allow_rebind]:
!n. EL n l = if n=0 then HD l else EL (PRE n) (TL l)
Proof INDUCT_TAC THEN ASM_REWRITE_TAC [NOT_SUC, EL, PRE]
QED
val EL_compute = store_thm("EL_compute",
Term ‘!n. EL n l = if n=0 then HD l else EL (PRE n) (TL l)’,
INDUCT_TAC THEN ASM_REWRITE_TAC [NOT_SUC, EL, PRE]);

(* a version of the above that is safe to use in the simplifier *)
(* only bother with BIT1/2 cases because the zero case is already provided
Expand Down
5 changes: 0 additions & 5 deletions src/list/src/selftest.sml
Original file line number Diff line number Diff line change
Expand Up @@ -64,11 +64,6 @@ val _ = app(test "LASTN_CONV" Term.compare term_to_string LASTN_CONV)
val _ = app(test "LIST_EQ_SIMP_CONV" Term.compare term_to_string
listSimps.LIST_EQ_SIMP_CONV)
[(``(l1:'a list ++ [])::t = p ++ q``, ``(l1:'a list)::t = p ++ q``)]
val _ = app(test "APPEND_CONV" Term.compare term_to_string
ListConv1.APPEND_CONV)
[(“[1;2;3] ++ [4;5;6]”, “[1;2;3;4;5;6]”),
(“[] ++ [1]”, “[1]”), (“[1;2] ++ []”, “[1;2]”),
(“[x;y] ++ [y;x]:'a list”, “[x;y;y;x]:'a list”)]

val _ = Lib.appi (fn i => fn t =>
test0 ("EL_CONV "^Int.toString (i+1))
Expand Down

0 comments on commit 9b66b42

Please sign in to comment.