Skip to content

Commit

Permalink
Missing changes in core pathTheory, etc.
Browse files Browse the repository at this point in the history
  • Loading branch information
binghe authored and mn200 committed Oct 16, 2023
1 parent a5c75f5 commit b76277a
Show file tree
Hide file tree
Showing 2 changed files with 82 additions and 0 deletions.
16 changes: 16 additions & 0 deletions src/coalgebras/llistScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -778,9 +778,13 @@ val LAPPEND = new_specification
val _ = export_rewrites ["LAPPEND"]
val _ = computeLib.add_persistent_funs ["LAPPEND"]

(* NOTE: The last char is Latin Subscript Small Letter L (U+2097) *)
val _ = set_mapped_fixity{fixity = Infixl 480, term_name = "LAPPEND",
tok = "++ₗ"}; (* UOK *)

val _ = TeX_notation { hol = "LAPPEND",
TeX = ("\\HOLTokenDoublePlusL", 1) };

(* properties of map and append *)

Theorem LMAP_APPEND:
Expand Down Expand Up @@ -2183,6 +2187,18 @@ val LNTH_NONE_MONO = Q.store_thm ("LNTH_NONE_MONO",
`~(m < z)` by metis_tac[LTAKE_LNTH_EL,optionTheory.NOT_SOME_NONE] >>
rw[] >> decide_tac);

(* cf. This is just another version of lnth_some_down_closed *)
Theorem LNTH_IS_SOME_MONO :
!m n l.
IS_SOME (LNTH n l) /\ m <= n
==>
IS_SOME (LNTH m l)
Proof
rw [IS_SOME_EXISTS]
>> MATCH_MP_TAC lnth_some_down_closed
>> qexistsl_tac [‘x’, ‘n’] >> rw []
QED

(* ------------------------------------------------------------------------ *)
(* Turning a stream-like linear order into a lazy list *)
(* ------------------------------------------------------------------------ *)
Expand Down
66 changes: 66 additions & 0 deletions src/coalgebras/pathScript.sml
Original file line number Diff line number Diff line change
Expand Up @@ -108,6 +108,9 @@ val first_thm = store_thm(

val finite_def =
Define`finite (sigma : ('a,'b) path) = LFINITE (SND (fromPath sigma))`;

Overload "infinite" = “\p. ~finite p”

val finite_thm = store_thm(
"finite_thm",
``(!x. finite (stopped_at x : ('a,'b) path) = T) /\
Expand Down Expand Up @@ -336,6 +339,17 @@ val finite_length = store_thm(
PROVE_TAC [finite_length_lemma, optionTheory.option_CASES,
optionTheory.NOT_NONE_SOME]);

Theorem length_cases :
!p. (finite p <=> (?n. length p = SOME (SUC n))) /\
(~finite p <=> (length p = NONE))
Proof
rw [finite_length]
>> reverse EQ_TAC >> rw []
>- (Q.EXISTS_TAC ‘SUC n’ >> rw [])
>> Cases_on ‘n’ >- fs [length_never_zero]
>> rename1 ‘length p = SOME (SUC n1)’
>> Q.EXISTS_TAC ‘n1’ >> rw []
QED

val length_pmap = store_thm(
"length_pmap",
Expand Down Expand Up @@ -756,6 +770,23 @@ val tail_drop = store_thm(
FULL_SIMP_TAC (srw_ss()) [DECIDE ``SUC x + y = SUC (x + y)``]);
val _ = export_rewrites ["tail_drop"]

(* from examples/lambda/barengregt/head_reductionScript.sml *)
Theorem drop_tail_commute :
!i p. SUC i IN PL p ==> (drop i (tail p) = tail (drop i p))
Proof
Induct THEN SIMP_TAC (srw_ss()) [Once FORALL_path] THEN
SRW_TAC [][]
QED

(* from examples/lambda/barengregt/head_reductionScript.sml *)
Theorem drop_not_stopped :
!i p. SUC i IN PL p ==> ?v r q. drop i p = pcons v r q
Proof
Induct THEN GEN_TAC THEN
Q.SPEC_THEN `p` STRUCT_CASES_TAC path_cases THEN
SRW_TAC [][]
QED

val el_drop = store_thm(
"el_drop",
``!i j p. i + j IN PL p ==> (el i (drop j p) = el (i + j) p)``,
Expand Down Expand Up @@ -1811,5 +1842,40 @@ SRW_TAC [] [] THENL
SRW_TAC [] [],
SRW_TAC [] [Once unfold_def, first_def, path_rep_bijections_thm]]);

Theorem infinite_path_cases :
!p. infinite p ==> ?x r q. (p = pcons x r q) /\ infinite q
Proof
rpt STRIP_TAC
>> STRIP_ASSUME_TAC (Q.SPEC ‘p’ path_cases)
>- (‘length p = NONE’ by PROVE_TAC [length_def] \\
‘length p = SOME 1’ by PROVE_TAC [alt_length_thm] \\
fs [])
>> qexistsl_tac [‘x’, ‘r’, ‘q’]
>> ASM_REWRITE_TAC []
>> CCONTR_TAC >> fs []
QED

Theorem finite_take_all :
!p. finite p ==> (take (PRE (THE (length p))) p = p)
Proof
HO_MATCH_MP_TAC finite_path_ind
>> rw [length_thm]
>> POP_ASSUM MP_TAC
>> ‘?n. length p = SOME (SUC n)’ by METIS_TAC [length_cases]
>> rw [arithmeticTheory.PRE_SUB1, take_def]
QED

Theorem finite_last_el :
!p. finite p ==> (last p = el (PRE (THE (length p))) p)
Proof
rpt STRIP_TAC
>> ‘last p = last (take (PRE (THE (length p))) p)’
by PROVE_TAC [finite_take_all]
>> POP_ASSUM (fn th => ONCE_REWRITE_TAC [th])
>> MATCH_MP_TAC last_take
>> rw [PL_def]
>> ‘?n. length p = SOME (SUC n)’ by METIS_TAC [length_cases]
>> rw []
QED

val _ = export_theory();

0 comments on commit b76277a

Please sign in to comment.