Skip to content

Commit

Permalink
Added the final working version of the realtime demo
Browse files Browse the repository at this point in the history
for FAZE.
  • Loading branch information
molchanovp committed Jan 7, 2020
1 parent af6d246 commit 671e6fd
Show file tree
Hide file tree
Showing 47 changed files with 4,607 additions and 0 deletions.
9 changes: 9 additions & 0 deletions .gitmodules
Original file line number Diff line number Diff line change
@@ -1,3 +1,12 @@
[submodule "preprocess"]
path = preprocess
url = https://github.com/swook/faze_preprocess
[submodule "demo/ext/eos"]
path = demo/ext/eos
url = https://github.com/patrikhuber/eos
[submodule "demo/ext/HRNet-Facial-Landmark-Detection"]
path = demo/ext/HRNet-Facial-Landmark-Detection
url = https://github.com/HRNet/HRNet-Facial-Landmark-Detection
[submodule "demo/ext/mtcnn-pytorch"]
path = demo/ext/mtcnn-pytorch
url = https://github.com/TropComplique/mtcnn-pytorch
39 changes: 39 additions & 0 deletions demo/KalmanFilter1D.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
#!/usr/bin/env python3

# --------------------------------------------------------
# Copyright (C) 2020 NVIDIA Corporation. All rights reserved.
# NVIDIA Source Code License (1-Way Commercial)
# Code written by Pavlo Molchanov, Shalini De Mello.
# --------------------------------------------------------

import numpy as np

class Kalman1D(object):

def __init__(self, R=0.001**2, sz=100):
self.Q = 1e-5 # process variance
# allocate space for arrays
self.xhat = np.zeros(sz, dtype=complex) # a posteri estimate of x
self.P = np.zeros(sz, dtype=complex) # a posteri error estimate
self.xhatminus = np.zeros(sz, dtype=complex) # a priori estimate of x
self.Pminus = np.zeros(sz, dtype=complex) # a priori error estimate
self.K = np.zeros(sz, dtype=complex) # gain or blending factor
self.R = R # estimate of measurement variance, change to see effect
self.sz = sz
# intial guesses
self.xhat[0] = 0.0
self.P[0] = 1.0
self.k = 1

def update(self, val):
k = self.k % self.sz
km = (self.k-1) % self.sz
self.xhatminus[k] = self.xhat[km]
self.Pminus[k] = self.P[km] + self.Q

# measurement update
self.K[k] = self.Pminus[k]/( self.Pminus[k]+self.R )
self.xhat[k] = self.xhatminus[k]+self.K[k]*(val-self.xhatminus[k])
self.P[k] = (1-self.K[k])*self.Pminus[k]
self.k = self.k + 1
return self.xhat[k]
65 changes: 65 additions & 0 deletions demo/camera.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
#!/usr/bin/env python3

# --------------------------------------------------------
# Copyright (C) 2020 NVIDIA Corporation. All rights reserved.
# NVIDIA Source Code License (1-Way Commercial)
# Code written by Shalini De Mello, Seonwook Park.
# --------------------------------------------------------

import cv2
import numpy as np
import pickle

def cam_calibrate(cam_idx, cap, cam_calib):

# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
pts = np.zeros((6 * 9, 3), np.float32)
pts[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2)

# capture calibration frames
obj_points = [] # 3d point in real world space
img_points = [] # 2d points in image plane.
frames = []
while True:
ret, frame = cap.read()

if ret:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, (9, 6), None)
if ret:
cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
# Draw and display the corners
frame_copy = frame.copy()
cv2.drawChessboardCorners(frame_copy, (9, 6), corners, ret)
cv2.imshow('points', frame_copy)

# s to save, c to continue, q to quit
if cv2.waitKey(0) & 0xFF == ord('s'):
img_points.append(corners)
obj_points.append(pts)
frames.append(frame)
elif cv2.waitKey(0) & 0xFF == ord('n'):
continue
elif cv2.waitKey(0) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break

# compute calibration matrices
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, frames[0].shape[0:2], None, None)

# check
error = 0.0
for i in range(len(frames)):
proj_imgpoints, _ = cv2.projectPoints(obj_points[i], rvecs[i], tvecs[i], mtx, dist)
error += (cv2.norm(img_points[i], proj_imgpoints, cv2.NORM_L2) / len(proj_imgpoints))
print("Camera calibrated successfully, total re-projection error: %f" % (error / len(frames)))

cam_calib['mtx'] = mtx
cam_calib['dist'] = dist
print("Camera parameters:")
print(cam_calib)

pickle.dump(cam_calib, open("calib_cam%d.pkl" % (cam_idx), "wb"))
1 change: 1 addition & 0 deletions demo/ext/HRNet-Facial-Landmark-Detection
1 change: 1 addition & 0 deletions demo/ext/eos
Submodule eos added at 9ac310
3 changes: 3 additions & 0 deletions demo/ext/mtcnn-pytorch/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
.ipynb_checkpoints
__pycache__

21 changes: 21 additions & 0 deletions demo/ext/mtcnn-pytorch/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2017 Dan Antoshchenko

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
26 changes: 26 additions & 0 deletions demo/ext/mtcnn-pytorch/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
# MTCNN

`pytorch` implementation of **inference stage** of face detection algorithm described in
[Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks](https://arxiv.org/abs/1604.02878).

## Example
![example of a face detection](images/example.png)

## How to use it
Just download the repository and then do this
```python
from src import detect_faces
from PIL import Image

image = Image.open('image.jpg')
bounding_boxes, landmarks = detect_faces(image)
```
For examples see `test_on_images.ipynb`.

## Requirements
* pytorch 0.2
* Pillow, numpy

## Credit
This implementation is heavily inspired by:
* [pangyupo/mxnet_mtcnn_face_detection](https://github.com/pangyupo/mxnet_mtcnn_face_detection)
Binary file not shown.
177 changes: 177 additions & 0 deletions demo/ext/mtcnn-pytorch/caffe_models/det1.prototxt
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
name: "PNet"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 12
input_dim: 12

layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 10
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "PReLU1"
type: "PReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}

layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "PReLU2"
type: "PReLU"
bottom: "conv2"
top: "conv2"
}

layer {
name: "conv3"
type: "Convolution"
bottom: "conv2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "PReLU3"
type: "PReLU"
bottom: "conv3"
top: "conv3"
}


layer {
name: "conv4-1"
type: "Convolution"
bottom: "conv3"
top: "conv4-1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 2
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}

layer {
name: "conv4-2"
type: "Convolution"
bottom: "conv3"
top: "conv4-2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 4
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "prob1"
type: "Softmax"
bottom: "conv4-1"
top: "prob1"
}
Binary file not shown.
Loading

0 comments on commit 671e6fd

Please sign in to comment.