forked from NVlabs/few_shot_gaze
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added files for a working gaze estimation demo (run_demo.py), which c…
…orrectly estimates gaze and maps the POR back to the monitor.
- Loading branch information
1 parent
09b20f6
commit ddf9067
Showing
7 changed files
with
975 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# -------------------------------------------------------- | ||
# Copyright (C) 2019 NVIDIA Corporation. All rights reserved. | ||
# NVIDIA Source Code License (1-Way Commercial) | ||
# Code written by Pavlo Molchanov, Shalini De Mello. | ||
# -------------------------------------------------------- | ||
|
||
import numpy as np | ||
|
||
class Kalman1D(object): | ||
|
||
def __init__(self, R=0.001**2, sz=100): | ||
self.Q = 1e-5 # process variance | ||
# allocate space for arrays | ||
self.xhat = np.zeros(sz, dtype=complex) # a posteri estimate of x | ||
self.P = np.zeros(sz, dtype=complex) # a posteri error estimate | ||
self.xhatminus = np.zeros(sz, dtype=complex) # a priori estimate of x | ||
self.Pminus = np.zeros(sz, dtype=complex) # a priori error estimate | ||
self.K = np.zeros(sz, dtype=complex) # gain or blending factor | ||
self.R = R # estimate of measurement variance, change to see effect | ||
self.sz = sz | ||
# intial guesses | ||
self.xhat[0] = 0.0 | ||
self.P[0] = 1.0 | ||
self.k = 1 | ||
|
||
def update(self, val): | ||
k = self.k % self.sz | ||
km = (self.k-1) % self.sz | ||
self.xhatminus[k] = self.xhat[km] | ||
self.Pminus[k] = self.P[km] + self.Q | ||
|
||
# measurement update | ||
self.K[k] = self.Pminus[k]/( self.Pminus[k]+self.R ) | ||
self.xhat[k] = self.xhatminus[k]+self.K[k]*(val-self.xhatminus[k]) | ||
self.P[k] = (1-self.K[k])*self.Pminus[k] | ||
self.k = self.k + 1 | ||
return self.xhat[k] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
# -------------------------------------------------------- | ||
# Copyright (C) 2020 NVIDIA Corporation. All rights reserved. | ||
# NVIDIA Source Code License (1-Way Commercial) | ||
# Code written by Seonwook Park, Shalini De Mello. | ||
# -------------------------------------------------------- | ||
|
||
import sys | ||
import cv2 | ||
|
||
sys.path.append("ext/mtcnn-pytorch/") | ||
from src import detect_faces, show_bboxes | ||
from PIL import Image | ||
|
||
class face: | ||
|
||
def detect(frame, use_max='SIZE'): | ||
|
||
# detect face | ||
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | ||
pil_im = Image.fromarray(frame_rgb) | ||
bounding_boxes, landmarks = detect_faces(pil_im, min_face_size=30.0) | ||
dets = [x[:4] for x in bounding_boxes] | ||
scores = [x[4] for x in bounding_boxes] | ||
|
||
face_location = [] | ||
if len(dets) > 0: | ||
max = 0 | ||
max_id = -1 | ||
for i, d in enumerate(dets): | ||
if use_max == 'SCORE': | ||
property = scores[i] | ||
elif use_max == 'SIZE': | ||
property = abs(dets[i][2] - dets[i][0]) * abs(dets[i][3] - dets[i][1]) | ||
if max < property: | ||
max = property | ||
max_id = i | ||
if use_max == 'SCORE': | ||
if max > -0.5: | ||
face_location = dets[max_id] | ||
else: | ||
face_location = dets[max_id] | ||
|
||
return face_location | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
""" | ||
Copyright 2019 ETH Zurich, Seonwook Park | ||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. | ||
""" | ||
|
||
# -------------------------------------------------------- | ||
# Copyright (C) 2020 NVIDIA Corporation. All rights reserved. | ||
# NVIDIA Source Code License (1-Way Commercial) | ||
# Code written by Seonwook Park, Shalini De Mello. | ||
# -------------------------------------------------------- | ||
|
||
import os | ||
import cv2 | ||
import eos | ||
import numpy as np | ||
|
||
class EosHeadPoseEstimator(object): | ||
|
||
def __init__(self): | ||
cwd = os.path.dirname(__file__) | ||
base_dir = cwd + '/ext/eos' | ||
|
||
model = eos.morphablemodel.load_model(base_dir + '/share/sfm_shape_3448.bin') | ||
self.blendshapes = eos.morphablemodel.load_blendshapes( | ||
base_dir + '/share/expression_blendshapes_3448.bin') | ||
self.morphablemodel_with_expressions = eos.morphablemodel.MorphableModel( | ||
model.get_shape_model(), self.blendshapes, | ||
eos.morphablemodel.PcaModel(), | ||
model.get_texture_coordinates(), | ||
) | ||
self.landmark_mapper = eos.core.LandmarkMapper( | ||
base_dir + '/share/ibug_to_sfm.txt') | ||
self.edge_topology = eos.morphablemodel.load_edge_topology( | ||
base_dir + '/share/sfm_3448_edge_topology.json') | ||
self.contour_landmarks = eos.fitting.ContourLandmarks.load( | ||
base_dir + '/share/ibug_to_sfm.txt') | ||
self.model_contour = eos.fitting.ModelContour.load( | ||
base_dir + '/share/sfm_model_contours.json') | ||
|
||
def fit_func(self, landmarks, image_size): | ||
image_w, image_h = image_size | ||
return eos.fitting.fit_shape_and_pose( | ||
self.morphablemodel_with_expressions, landmarks_to_eos(landmarks), | ||
self.landmark_mapper, image_w, image_h, self.edge_topology, | ||
self.contour_landmarks, self.model_contour, | ||
) | ||
|
||
|
||
def landmarks_to_eos(landmarks): | ||
out = [] | ||
for i, (x, y) in enumerate(landmarks[:68, :]): | ||
out.append(eos.core.Landmark(str(i + 1), [x, y])) | ||
return out | ||
|
||
|
||
class PnPHeadPoseEstimator(object): | ||
ibug_ids_to_use = sorted([ | ||
28, 29, 30, 31, # nose ridge | ||
32, 33, 34, 35, 36, # nose base | ||
37, 40, # left-eye corners | ||
43, 46, # right-eye corners | ||
]) | ||
|
||
def __init__(self): | ||
# Load and extract vertex positions for selected landmarks | ||
cwd = os.path.dirname(__file__) | ||
base_dir = cwd + '/ext/eos' | ||
self.model = eos.morphablemodel.load_model( | ||
base_dir + '/share/sfm_shape_3448.bin') | ||
self.shape_model = self.model.get_shape_model() | ||
self.landmarks_mapper = eos.core.LandmarkMapper( | ||
base_dir + '/share/ibug_to_sfm.txt') | ||
self.sfm_points_ibug_subset = np.array([ | ||
self.shape_model.get_mean_at_point( | ||
int(self.landmarks_mapper.convert(str(d))) | ||
) | ||
for d in range(1, 69) | ||
if self.landmarks_mapper.convert(str(d)) is not None | ||
]) | ||
|
||
self.sfm_points_for_pnp = np.array([ | ||
self.shape_model.get_mean_at_point( | ||
int(self.landmarks_mapper.convert(str(d))) | ||
) | ||
for d in self.ibug_ids_to_use | ||
]) | ||
|
||
# Rotate face around | ||
rotate_mat = np.asarray([[1, 0, 0], [0, -1, 0], [0, 0, -1]], dtype=np.float64) | ||
self.sfm_points_ibug_subset = np.matmul(self.sfm_points_ibug_subset.reshape(-1, 3), rotate_mat) | ||
self.sfm_points_for_pnp = np.matmul(self.sfm_points_for_pnp.reshape(-1, 3), rotate_mat) | ||
|
||
# Center on mean point between eye corners | ||
between_eye_point = np.mean(self.sfm_points_for_pnp[-4:, :], axis=0) | ||
self.sfm_points_ibug_subset -= between_eye_point.reshape(1, 3) | ||
self.sfm_points_for_pnp -= between_eye_point.reshape(1, 3) | ||
|
||
# # Visualize selected vertices as scatter plot | ||
# print(self.sfm_points_for_pnp) | ||
# import matplotlib.pyplot as plt | ||
# from mpl_toolkits.mplot3d import Axes3D | ||
# fig = plt.figure(figsize=(8,8)) | ||
# ax = fig.add_subplot(111, projection='3d') | ||
# ax.scatter( | ||
# self.sfm_points_for_pnp[:, 0], | ||
# self.sfm_points_for_pnp[:, 1], | ||
# self.sfm_points_for_pnp[:, 2], | ||
# ) | ||
# ax.set_xlabel('x') | ||
# ax.set_ylabel('y') | ||
# ax.set_zlabel('z') | ||
# plt.show(block=True) | ||
|
||
def fit_func(self, landmarks, camera_parameters): | ||
landmarks = np.array([ | ||
landmarks[i - 1, :] | ||
for i in self.ibug_ids_to_use | ||
], dtype=np.float64) | ||
fx, fy, cx, cy = camera_parameters | ||
|
||
# Initial fit | ||
camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float64) | ||
success, rvec, tvec, inliers = cv2.solvePnPRansac(self.sfm_points_for_pnp, landmarks, | ||
camera_matrix, None, flags=cv2.SOLVEPNP_EPNP) | ||
|
||
# Second fit for higher accuracy | ||
success, rvec, tvec = cv2.solvePnP(self.sfm_points_for_pnp, landmarks, camera_matrix, None, | ||
rvec=rvec, tvec=tvec, useExtrinsicGuess=True, flags=cv2.SOLVEPNP_ITERATIVE) | ||
|
||
return rvec, tvec | ||
|
||
def project_model(self, rvec, tvec, camera_parameters): | ||
fx, fy, cx, cy = camera_parameters | ||
camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float64) | ||
points, _ = cv2.projectPoints(self.sfm_points_ibug_subset, rvec, tvec, camera_matrix, None) | ||
return points | ||
|
||
|
||
def drawPose(self, img, r, t, cam, dist): | ||
|
||
modelAxes = np.array([ | ||
np.array([0., -20., 0.]).reshape(1, 3), | ||
np.array([50., -20., 0.]).reshape(1, 3), | ||
np.array([0., -70., 0.]).reshape(1, 3), | ||
np.array([0., -20., -50.]).reshape(1, 3) | ||
]) | ||
|
||
projAxes, jac = cv2.projectPoints(modelAxes, r, t, cam, dist) | ||
|
||
cv2.line(img, (int(projAxes[0, 0, 0]), int(projAxes[0, 0, 1])), | ||
(int(projAxes[1, 0, 0]), int(projAxes[1, 0, 1])), | ||
(0, 255, 255), 2) | ||
cv2.line(img, (int(projAxes[0, 0, 0]), int(projAxes[0, 0, 1])), | ||
(int(projAxes[2, 0, 0]), int(projAxes[2, 0, 1])), | ||
(255, 0, 255), 2) | ||
cv2.line(img, (int(projAxes[0, 0, 0]), int(projAxes[0, 0, 1])), | ||
(int(projAxes[3, 0, 0]), int(projAxes[3, 0, 1])), | ||
(255, 255, 0), 2) |
Oops, something went wrong.