Skip to content

Hayoung93/FixMatch-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

  • TODO
    • Randomize magnitude of randaug (someday in future...)
    • DDP & interleave for batch norm in multiple gpus? (someday in future...)

Unofficial Pytorch implementation of FixMatch (NIPS 2020)

  • STL-10 dataset
    • Note that the original paper uses 1000 labels for training, here I used all possible labels
  • WRN-28-2 (copied model code from xternalz/WideResNet-pytorch)

Links to official implementation

Environments

  • Use docker image: pytorch/pytorch:1.12.1-cuda11.3-cudnn8-devel
  • Install packages: pip install tensorboard termcolor yacs

Usage

  • python train.py --input_size 96 --log_name 20230131 --randaug --num_epochs 300 --t_max 300

Trained weight

  • RandomAugment
    • Best val acc model was not saved for some early experiments
    • Refer to papaerswithcode, 92.02 is the official score.
RA magnitude RA number epochs Initial LR val acc
1 2 200 0.005 91.05 (best was 91.275)
1 2 300 0.005 92.95 (best was 93.075)
  • CTAugment
    • Note: Augmentation's behavior of the original paper and official implement seems different
      • Additional 'blur' operation
      • Blending after smoothing
      • ...
    • In this version, I followed the paper.
    • Refer to papaerswithcode, 94.83 is the official score.
epochs Initial LR val acc
300 0.05 91.50

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages