Skip to content

Latest commit

 

History

History
43 lines (36 loc) · 1.9 KB

README.md

File metadata and controls

43 lines (36 loc) · 1.9 KB

Awesome-Table-Recognition

Original Code is Lore I modified this code with faster inference and higher accuracy by removing locations regression and add a simple and efficient postprocess

Install

export PATH="/usr/local/cuda-11.8/bin:$PATH"
export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
source ~/.bashrc
conda create --name Lore python=3.7
conda activate Lore
pip install -r requirements.txt
pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
chmod +x  *.sh
cd lib/models/networsk/DCNv2
python3 setup.py build develop

Note: if It causes error : Unknown CUDA arch (8.9,9.0,...) or GPU not supported --> export TORCH_CUDA_ARCH_LIST=7.5 or export TORCH_CUDA_ARCH_LIST=6.0 .The rerun setup.py

Weights

Available model weights (using dla-34 backbone):

Name Backbone Regressor Arc Image Size Checkpoint
ckpt_wtw DLA-34 4+4 1024 Trained on WTW
ckpt_ptn DLA-34 3+3 512 Trained on PubTabNet
ckpt_wireless ResNet-18 4+4 768 Trained on Wireless Tables*

Inference

python inference.py

Result

Table Sample

Table Sample

Result Sample

Result Sample

Table Detection

Datset TableBank and WTW

Availabel Dataset for training Yolo in Here