Skip to content

Holmes2002/Awesome-Table-Recognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Awesome-Table-Recognition

Original Code is Lore I modified this code with faster inference and higher accuracy by removing locations regression and add a simple and efficient postprocess

Install

export PATH="/usr/local/cuda-11.8/bin:$PATH"
export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
source ~/.bashrc
conda create --name Lore python=3.7
conda activate Lore
pip install -r requirements.txt
pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
chmod +x  *.sh
cd lib/models/networsk/DCNv2
python3 setup.py build develop

Note: if It causes error : Unknown CUDA arch (8.9,9.0,...) or GPU not supported --> export TORCH_CUDA_ARCH_LIST=7.5 or export TORCH_CUDA_ARCH_LIST=6.0 .The rerun setup.py

Weights

Available model weights (using dla-34 backbone):

Name Backbone Regressor Arc Image Size Checkpoint
ckpt_wtw DLA-34 4+4 1024 Trained on WTW
ckpt_ptn DLA-34 3+3 512 Trained on PubTabNet
ckpt_wireless ResNet-18 4+4 768 Trained on Wireless Tables*

Inference

python inference.py

Result

Table Sample

Table Sample

Result Sample

Result Sample

Table Detection

Datset TableBank and WTW

Availabel Dataset for training Yolo in Here

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published