Skip to content

Commit

Permalink
Update make_final_figures_and_tables.R
Browse files Browse the repository at this point in the history
  • Loading branch information
QLLZ committed Jul 8, 2024
1 parent a1b37e3 commit 6b7803d
Showing 1 changed file with 21 additions and 21 deletions.
42 changes: 21 additions & 21 deletions Analysis/R/make_final_figures_and_tables.R
Original file line number Diff line number Diff line change
Expand Up @@ -1206,7 +1206,7 @@ if (opt$redo | !file.exists(opt$bundle_filename)) {
"history of moderate",
"sustained low")))

adm2_results_occurrence <- adm2_results %>%
adm2_results_occurrence_2016_2020 <- adm2_results_2016_2020 %>%
mutate(recent_occurence = location_period_id %in% unlist(final_joins$adm2_lps)) %>%
inner_join(endemicity_df_50_v2 %>% select(location_period_id, endemicity)) %>%
inner_join(pred_prob_draws %>%
Expand All @@ -1217,14 +1217,14 @@ if (opt$redo | !file.exists(opt$bundle_filename)) {


# Map over periods to compute orderings
occurence_cumul <- map_df(c("2011-2015", "2016-2020", "2011-2020", "optimal"), function(x) {
occurence_cumul_2016_2020 <- map_df(c("2011-2015", "2016-2020", "2011-2020", "optimal"), function(x) {

# If optimal use 2016-2020
xx <- case_when(x == "optimal" ~ "2016-2020",
x == "2011-2020" ~ "2016-2020",
TRUE ~ x)

adm2_results_occurrence %>%
adm2_results_occurrence_2016_2020 %>%
filter(period == xx) %>%
{
df <- .
Expand Down Expand Up @@ -1254,11 +1254,11 @@ if (opt$redo | !file.exists(opt$bundle_filename)) {
as.matrix()

rankings_occurrence <- c("2011-2015", "2016-2020", "2011-2020", "optimal")
cumul_pop_draws <- map(
cumul_pop_draws_2016_2020 <- map(
rankings_occurrence,
function(x) {

compute_cumulative_stats(data = occurence_cumul,
compute_cumulative_stats(data = occurence_cumul_2016_2020,
target_ranking = x,
draws_mat = pred_draws_wide_mat,
n_draws = length(sample_ids),
Expand All @@ -1270,21 +1270,21 @@ if (opt$redo | !file.exists(opt$bundle_filename)) {


# Statistics on fractions
cumul_pop_frac_stats <- map_df(
cumul_pop_frac_stats_2016_2020 <- map_df(
c("2011-2015", "2016-2020", "2011-2020", "optimal"),
function(x) {
compute_cumul_frac(cumul_draws = cumul_pop_draws,
data = occurence_cumul,
compute_cumul_frac(cumul_draws = cumul_pop_draws_2016_2020,
data = occurence_cumul_2016_2020,
target_ranking = x)

})

# Stats
cumul_pop_stats <- map_df(
cumul_pop_stats_2016_2020 <- map_df(
c("2011-2015", "2016-2020", "2011-2020", "optimal"),
function(x) {

compute_cumulative_stats(data = occurence_cumul,
compute_cumulative_stats(data = occurence_cumul_2016_2020,
target_ranking = x,
draws_mat = pred_draws_wide_mat,
n_draws = length(sample_ids),
Expand Down Expand Up @@ -2941,9 +2941,9 @@ ggsave(plot = p_fig5_95,

target_pop_levels <- c(1e7, seq(5e7, 4e8, by = 5e7))

pop_frac_sel <- map_df(target_pop_levels, function(x) {
pop_frac_sel_2016_2020 <- map_df(target_pop_levels, function(x) {
print(x)
cumul_pop_frac_stats %>%
cumul_pop_frac_stats_2016_2020 %>%
group_by(ranking) %>%
group_modify(function(y, z) {
rid <- which(y$cumul_pop >= x)[1]
Expand Down Expand Up @@ -2985,8 +2985,8 @@ colors_ranking <- function() {

pd <- position_dodge(width = .8, preserve = "single")

data_for_figure6 <- bind_rows(
pop_frac_sel %>%
data_for_figure6_2016_2020 <- bind_rows(
pop_frac_sel_2016_2020 %>%
mutate(what = "population living in ADM2 units\nwith cholera occurence in 2022-2023"),
case_frac_sel_2016_2020 %>%
mutate(what = "annual cholera cases in 2016-2020")
Expand Down Expand Up @@ -3031,7 +3031,7 @@ data_for_figure6 <- bind_rows(
leg_title <- "Period used for\ntargeting"
pd <- position_dodge(width = 2.5e7, preserve = "single")

p_targets_v2 <- data_for_figure6 %>%
p_targets_v2_2016_2020 <- data_for_figure6_2016_2020 %>%
mutate(ranking = case_when(ranking == "optimal" ~ "2022-2023",
T ~ ranking) %>%
factor(levels = names(colors_ranking()))) %>%
Expand Down Expand Up @@ -3100,13 +3100,13 @@ p_targets_v2 <- data_for_figure6 %>%
# label = c("Realized coverage gap", "Best-case coverage gap"))


data_arrows_figure6_v2 <- data_for_figure6 %>%
data_arrows_figure6_v2_2016_2020 <- data_for_figure6_2016_2020 %>%
filter(target_pop == 1e8,
str_detect(what, "cases")) %>%
ungroup() %>%
slice(1:2) %>%
bind_rows(
data_for_figure6 %>%
data_for_figure6_2016_2020 %>%
filter(target_pop == 1e8,
str_detect(what, "pop")) %>%
ungroup() %>%
Expand All @@ -3123,10 +3123,10 @@ data_arrows_figure6_v2 <- data_for_figure6 %>%
str_glue("unreached {what_label[1]}"))) %>%
slice(1)

p_targets2 <- p_targets_v2 +
p_targets2_2016_2020 <- p_targets_v2_2016_2020 +
theme(legend.background = element_blank()) +
geom_segment(
data = data_arrows_figure6_v2,
data = data_arrows_figure6_v2_2016_2020,
aes(x = x, y = y, yend = .99,
group = ranking),
inherit.aes = F,
Expand All @@ -3135,7 +3135,7 @@ p_targets2 <- p_targets_v2 +
color = c("#575757")
) +
geom_text(
data = data_arrows_figure6_v2,
data = data_arrows_figure6_v2_2016_2020,
aes(x = x2, y = (y + .99)/2, label = label),
inherit.aes = F,
angle = 90,
Expand All @@ -3145,7 +3145,7 @@ p_targets2 <- p_targets_v2 +
geom_hline(aes(yintercept = 1), color = "darkgray", lty = 2, lwd = .6)


ggsave(p_targets2, filename = str_glue("{opt$out_dir}/{opt$out_prefix}_fig_6.png"),
ggsave(p_targets2_2016_2020, filename = str_glue("{opt$out_dir}/{opt$out_prefix}_fig_6.png"),
width = 12, height = 5.5, dpi = 300)

# Scraps ------------------------------------------------------------------
Expand Down

0 comments on commit 6b7803d

Please sign in to comment.